Начертательная геометрия Лекции, примеры выполнения задания

1 семестр | 2 семестр | 3 семестр | 4 семестр | Мат. анализ ч1 | Мат. анализ ч2 | Мат. анализ ч3 | Мат. анализ ч4 | Строение атомных ядер | Модели атомных ядер | Ядерные реакции | Термодинамика | Магнитое поле | Оптика | Механика |

Математика решение контрольной
Лекции и задачи 1 семестр
Лекции и задачи 2 семестр
Лекции и задачи 3 семестр
Лекции и задачи 4 семестр
Интегралы задачи с решением
Неопределенные интегралы
Метод интегрирования по частям
Курсовой (типовой ) расчет
(задания из Кузнецова)
Математический анализ
Производные и дифференциалы
Вычисление двойного интеграла.
Примеры решения задач по теме
Матрица, функции
Примеры решения задач
контрольной за первый курс
Ряды
Функции
Аналитическая геометрия
Дифференциальные уравнения
Элементарная математика
Поверхности второй степени
Пределы и числовые ряды
ТФКП
Билеты к экзамену
Компьютерная математика Mathematica
Матричная лаборатория MATLAB
Символьная математика Maple
Физика примеры решения задач
Строение атомных ядер
Модели атомных ядер
Ядерные реакции
Электростатика
Механика
Термодинамика
Конденсаторы
Оптика
Радиоактивность
Фотометрия
Квантовая механика
Задачи по ядерке
Радиоактивный распад
Задачи на распад
Взаимодействие нейтронов
Ядерные реакции
Деление и синтез ядер
Нейтронная физика
Квантовая физика
Прикладная математика
Электромагнитное
взаимодействие
Электрическое поле
Фотоны
Электромагнетизм
Дозиметрия
Термодинамика
Атомная энергетика
Быстрый реактор со свинцовым теплоносителем (БРЕСТ-1200)
Авария на ЧАЭС
Физика ядерного реактора
Поглощение электромагнитного излучения в веществе
Радионуклиды в организме человека
Атомные станции
Предотвращение загрязнения окружающей среды выбросами АЭС
Атомная энергетика в странах мира
Атомные реакторы
Атомные станции теплоснабжения
Ядерные двигатели для транспорта
Ядерные двигатели для авиации
Космические ядерные двигатели

Физика атомного ядра и элементарных частиц

Электротехника и электроника
Основы электротехники
Исследование полевых транзисторов
Полупроводниковые выпрямители
Исследование стабилитронов
Курсовые по электронике
Низкочастотный RC- генератор
Выбор мощности электродвигателей
Рассчитать каскад транзисторного усилителя напряжения
Биполярный транзистор
Расчёт электрических фильтров
Расчет управляемых тиристорных выпрямителей
Расчет однофазного трансформатора
Начертательная геометрия
Выполнения заданий контрольной работы
Позиционные задачи
Метрические задачи
Сопромат
Испытание на сжатие
Расчет на прочность и жесткость

Задачи курса сопротивление материалов

Эротика в искусстве
Альдегревер. Ночь. Гравюра
Вакханка. Французская литография
Виккарио. Сластолюбивый фавн
Гравюра. Шабаш ведьм
Информатика
Windovs server
Linux

Обратная задача. Чтобы задать на чертеже плоскость, перпендикулярную данной прямой n, достаточно задать проекции горизонтали и фронтали этой плоскости так, чтобы f2 ^ n2, a h1 ^ n1.

Взаимная перпендикулярность двух плоскостей общего положения Известно, что две плоскости взаимно перпендикулярны, если в одной из них лежит прямая, перпендикулярная другой плоскости. Таким образом, построение взаимно перпендикулярных плоскостей общего положения сводится к построению взаимно перпендикулярных прямой и плоскости.

Задачи на определение расстояний между геометрическими фигурами К таким задачам относятся: задачи на определение расстояний от точки до прямой, до плоскости, до поверхности; между параллельными и скрещивающимися прямыми; между параллельными плоскостями и т. п.

Преобразование комплексного чертежа Решение многих пространственных задач на комплексном чертеже часто бывает слишком сложным из-за того, что заданные геометрические фигуры расположены произвольно относительно плоскостей проекций и, следовательно, проецируются на эти плоскости в искажённом виде.

Первая основная задача преобразования комплексного чертежа Преобразовать комплексный чертёж так, чтобы прямая общего положения в новой системе плоскостей проекций стала бы прямой уровня

Третья основная задача преобразования комплексного чертежа Преобразовать комплексный чертёж так, чтобы плоскость общего положения стала бы проецирующей

Способ вращения вокруг проецирующей оси В этом разделе Вы узнаете, каким образом преобразовать комплексный чертеж, не меняя положение плоскостей проекций, чтобы соответствующая фигура в конкретной задаче заняла бы частное положение. Если заданные фигуры занимают общее, случайное, часто неудобное с точки зрения поставленной задачи положение относительно плоскостей проекций, следует привести их в удобное положение. Очевидно, для этого нужно посмотреть на объект с другой точки зрения (ввести новую плоскость проекций), как было показано выше, или повернуть объект.

Примеры применения способа вращения точки вокруг проецирующей оси

Задача Прямую общего положения СD поставить в положение проецирующей прямой.

Плоскость общего положения поставить в положение проецирующей

Решение метрических задач с помощью преобразования комплексного чертежа Преобразование комплексного чертежа часто используется при решении метрических задач. В этом случае конечной целью преобразования чертежа является получение такой проекции оригинала, на которой можно было бы видеть в натуральную величину геометрический элемент, связанный с искомой метрической характеристикой.

Задача: Построить проекции равностороннего треугольника АВС, принадлежащего плоскости Г

Решение позиционных задач с помощью преобразования комплексного чертежа Многие позиционные задачи, главным образом, задачи на пересечение поверхностей с прямыми или плоскостями общего положения, удобно решать с помощью преобразования комплексного чертежа. В этом случае конечной целью преобразования является получение такой проекции оригинала, при которой участвующие в пересечении прямая или плоскость находятся в частном положении. Тогда в новом положении решение задачи значительно упрощается. При необходимости проекции общего элемента возвращают в исходный чертёж в обратном порядке.

Изображения на технических чертежах. Изображения на чертежах в зависимости от содержания разделяют на виды, разрезы, сечения в соответствии с ГОСТ 2.305-68*. Изображения предметов на чертежах получают способом прямоугольного проецирования.

Разрезы. Разрезом называется изображение предмета, мысленно рассеченного одной или несколькими плоскостями. На разрезе показывается то, что лежит в секущей плоскости и что расположено за ней. При этом часть предмета, расположенную между наблюдателем и секущей плоскостью, мысленно удаляют, в результате чего все закрытые этой частью поверхности становятся видимыми.

Местные разрезы Местным разрезом называется разрез, служащий для выяснения внутреннего устройства предмета лишь в отдельном ограниченном месте. В машиностроении при вычерчивании сплошных (непустотелых) предметов полные разрезы не применяют. Однако часто в сплошных деталях имеются местные углубления или отверстия, форму которых нужно показать.

Сечения Сечением называется изображение фигуры, получающейся при мысленном рассечении предмета одной плоскостью . На сечении показывается только то, что лежит в секущей плоскости. Построение сечений.

Выносные элементы. Выносной элемент - дополнительное отдельное увеличенное изображение какой-либо части предмета, требующей пояснений в отношении формы и размеров, а поэтому обычно выполняется в масштабе увеличения. При применении выносного элемента соответствующее место отмечают на виде, разрезе или сечении замкнутой сплошной тонкой линией- окружностью, овалом и т.п. с обозначением прописной буквой русского алфавита или буквенно-цифровым.

Рассмотрим примеры выполнения заданий. Задача1. По наглядному изображению построить три вида детали и выполнить необходимые разрезы.

Сведения о поверхностях. Построение линий, принадлежащих поверхностям. Для того, чтобы построить линии пересечения поверхностей, нужно уметь строить не только поверхности, но и точки, расположенные на них. В этом разделе рассматриваются наиболее часто встречающиеся поверхности.

Сфера. Поверхность сферы пересекается с плоскостью и со всеми поверхностями вращения с ней, по окружностям. Если эти окружности параллельны плоскостям проекций, то проецируются на них в окружность натуральной величины, а если не параллельны, то в виде эллипса.

Рекомендации по выбору аксонометрических проекций Из ГОСТ2.317-70 и различных видов аксонометрических проекций рассмотрим ортогональные изометрию и диметрию, а также косоугольную диметрию, как наиболее часто применяющиеся. Прямоугольная изометрия В изометрии все оси наклонены к аксонометрической плоскости под одним и тем же углом, следовательно угол между осями (120° ) и коэффициент искажения будет одинаков.

Этапы выполнения наглядного изображения детали. Деталь вписывается в поверхность четырехугольной призмы, размеры которой равны габаритным размерам детали. Эта поверхность называется обертывающей. Выполняется изометрическое изображение этой поверхности. Обертывающая поверхность строится по габаритным размерам

Построение окружностей в прямоугольной диметрии. Окружности, лежащие на плоскостях координат в прямоугольной диметрии, также как и в изометрии, будут изображаться в виде эллипсов

Метрические задачи. Преобразование комплексного чертежа

Модуль №4 предполагает знакомство с задачами, связанными с различными измерениями: натуральных величин отрезков, углов, плоских фигур; расстояний между фигурами и т.д. Вы узнаете, как проще решать метрические и позиционные задачи, используя способы преобразования комплексного чертежа. Кроме того, используя знания, полученные в модулях 1-3, Вы научитесь решать сложные инженерные конструктивные задачи.

Метрические задачи

"Ведь между двух соседних точек

Прямая - самый краткий путь,

Иначе слишком много кочек

Необходимо обогнуть."

Л.Н.Мартынов

Как Вы думаете?

1. Что является кратчайшим расстоянием от точки до прямой, до плоскости?

2. Что является кратчайшим расстоянием между скрещивающимися прямыми, между двумя параллельными плоскостями?

3. На чертеже рис. 4-1 показан угол АВС. Присутствует ли на какой-нибудь плоскости проекций натуральная величина угла?

Метрические задачи. Преобразование комплексного чертежа

Рис. 4-1

Метрическими называются такие задачи, в условии или решении которых присутствуют геометрические фигуры или понятия, связанные с численной характеристикой.

Наиболее часто встречаются метрические задачи: на взаимную перпендикулярность геометрических фигур, на определение натуральной величины заданных отрезка или угла, на построение натурального вида плоской фигуры и т. п.

Из всего многообразия метрических задач выделяются две основные:

1. Первая основная метрическая задача - на перпендикулярность прямой и плоскости.

2. Вторая основная метрическая задача - на определение натуральной длины отрезка. Эта задача решается методом прямоугольного треугольника, который рассматривался в первом модуле.

Рассмотрим подробнее первую основную метрическую задачу.

Взаимная перпендикулярность прямой и плоскости.

Из элементарной геометрии известно, что прямая перпендикулярна плоскости, если она перпендикулярна двум пересекающимся прямым, лежащим в этой плоскости.

Задача: Через точку К Î S построить прямую n, перпендикулярную плоскости S|| b). Анализ решения задачи проведём на пространственном чертеже, рис. 4-2.

Взаимная перпендикулярность прямой и плоскости

Чтобы провести прямую n ^ S, нужно в этой плоскости взять две пересекающиеся прямые (на рис. 4-2 это р Ç m = К). Прямую n нужно строить перпендикулярно одновременно двум этим прямым.

Однако, если прямые р и m будут прямыми общего положения, то прямой угол к ним ни на одной плоскости проекций не спроецируется в натуральную величину. Согласно теореме опроецировании прямого угла (см. свойство 2 ортогонального проецирования, модуль №1) прямой угол спроецируется в натуральную величину на какую-нибудь плоскость проекций, если одна сторона прямого угла будет параллельной этой плоскости проекций. Поэтому, в качестве прямых р и m выгодно взять горизонталь h и фронталь f (рис. 4-3). Тогда прямой угол между n и h спроецируется в натуральную величину на П1, а прямой угол между n и f - на П2.

Тогда прямой угол между n и h спроецируется в натуральную величину на П1,

Рис. 4-3

Плоский чертёж: На рис. 4-4 плоскость S задана параллельными прямыми а и b. Точка К(К2) принадлежит этой плоскости. Нужно построить n ^ S, n Î К.

Плоский чертёж

Рис. 4-4

Согласно приведённым выше рассуждениям, в плоскости необходимо взять горизонталь и фронталь, затем, перпендикулярно каждой из них строить п. Построения начинаем с горизонтали (рис. 4-5).

Согласно приведённым выше рассуждениям, в плоскости необходимо взять горизонталь и фронталь

Рис. 4-5

Через точку К2 проводим h2 ^ линиям связи, находим h1, а на ней, с помощью линии связи, К1. Так как n ^ h, то n1 ^ h1, поэтому проводим n1 ^ h1 через точку K1.

Аналогично находим n2 (рис. 4-6). Через точку К1 проводим f1 ^ линиям связи, находим f2. Так как n ^ f, тo n2 ^ f2, поэтому проводим n2 ^ f2 через точку К2.

Полностью решение задачи представлено

Рис. 4-6

Полностью решение задачи представлено на рис. 4-7. Видимость прямой n не учитывалась.

Алгоритмическая запись решения

Рис. 4-7

Алгоритмическая запись решения:

1. h Ì S, f Ì S, h Ç f = K.

2. K Î n Þ K1 Î n1, K2 Î n2.

3. n ^ h Þ n1 ^ h1;

4. n ^ f Þ n2 ^ f2.

Итак, чтобы задать на комплексном чертеже прямую n, перпендикулярную данной плоскости S, достаточно построить n1 и n2, расположив их в любом месте чертежа, чтобы n1^h1, n2 ^ f2, где h и f - горизонталь и фронталь плоскости, при условии, что h Ç f.

Если плоскость S занимает проецирующее положение, то прямая, перпендикулярная ей, является линией уровня (рис. 4-8, 4-9).

Рис. 4-8

Если S - горизонтально проецирующая:

S ^^ П1 Þ h1 = S1, f ^^ П1

n ^ h Þ n1 ^ h1; n ^ f Þ n2 ^ f 2; Þ n - горизонталь

Рис. 4-9

Если S - фронтально проецирующая:

S ^^ П2 Þ f2 = S2, h ^^ П2.

n ^ h Þ n1 ^ h1; n ^ f Þ n2 ^ f2; Þ n -фронталь

Чтобы лучше понять данное утверждение, нужно вспомнить , какие прямые являются линиями уровня в проецирующих плоскостях. Для этого посмотрите рис. 2-12 и 2-14 в модуле № 2.

Начертательная геометрия примеры решения задач