1 семестр | 2 семестр | 3 семестр | 4 семестр | Мат. анализ ч1 | Мат. анализ ч2 | Мат. анализ ч3 | Мат. анализ ч4 | Строение атомных ядер | Модели атомных ядер | Ядерные реакции | Термодинамика | Магнитое поле | Оптика | Механика |

Курс лекций Теория вероятностей Оглавление

 

Распределение Пуассона.

(Симеон Дени Пуассон (1781 – 1840) – французский математик)

Пусть производится п независимых испытаний, в которых появление события А имеет вероятность р. Если число испытаний п достаточно велико, а вероятность появления события А в каждом испытании мало (p£0,1), то для нахождения вероятности появления события А k раз находится следующим образом. Сделаем важное допущение – произведение пр сохраняет постоянное значение: Практически это допущение означает, что среднее число появления события в различных сериях испытаний (при разном п) остается неизменным. По формуле Бернулли получаем: Найдем предел этой вероятности при п® ¥.
Получаем формулу распределения Пуассона

Если известны числа l и k, то значения вероятности можно найти по соответствующим таблицам распределения Пуассона. Числовые характеристики дискретных случайных величин. Закон распределения полностью характеризует случайную величину. Однако, когда невозможно найти закон распределения, или этого не требуется, можно ограничиться нахождением значений, называемых числовыми характеристиками случайной величины. Эти величины определяют некоторое среднее значение, вокруг которого группируются значения случайной величины, и степень их разбросанности вокруг этого среднего значения.

Определение. Математическим ожиданием дискретной случайной величины называется сумма произведений всех возможных значений случайной величины на их вероятности. Математическое ожидание существует, если ряд, стоящий в правой части равенства, сходится абсолютно. С точки зрения вероятности можно сказать, что математическое ожидание приближенно равно среднему арифметическому наблюдаемых значений случайной величины. Свойства математического ожидания.

1) Математическое ожидание постоянной величины равно самой постоянной.

2) Постоянный множитель можно выносить за знак математического ожидания.

3) Математическое ожидание произведения двух независимых случайных величин равно произведению их математических ожиданий. Это свойство справедливо для произвольного числа случайных величин.

4) Математическое ожидание суммы двух случайных величин равно сумме математических ожиданий слагаемых. Это свойство также справедливо для произвольного числа случайных величин. Пусть производится п независимых испытаний, вероятность появления события А в которых равна р.

Теорема. Математическое ожидание М(Х) числа появления события А в п независимых испытаниях равно произведению числа испытаний на вероятность появления события в каждом испытании. Однако, математическое ожидание не может полностью характеризовать случайный процесс. Кроме математического ожидания надо ввести величину, которая характеризует отклонение значений случайной величины от математического ожидания. Это отклонение равно разности между случайной величиной и ее математическим ожиданием. При этом математическое ожидание отклонения равно нулю. Это объясняется тем, что одни возможные отклонения положительны, другие отрицательны, и в результате их взаимного погашения получается ноль.

Определение. Дисперсией (рассеиванием) дискретной случайной величины называется математическое ожидание квадрата отклонения случайной величины от ее математического ожидания.

Пример. Для рассмотренного выше примера закон распределения случайной величины имеет вид:

X

0 1 2
p 0,0625 0,375 0,5625

 

 Найти математическое ожидание и дисперсию случайной величины. Математическое ожидание случайной величины равно: Возможные значения квадрата отклонения: Тогда

[X-M(X)]2

2,25 0,25 0,25
p 0,0625 0,375 0,5625

 

Дисперсия равна: Однако, на практике подобный способ вычисления дисперсии неудобен, т.к. приводит при большом количестве значений случайной величины к громоздким вычислениям. Поэтому применяется другой способ. Вычисление дисперсии

. Теорема. Дисперсия равна разности между математическим ожиданием квадрата случайной величины Х и квадратом ее математического ожидания.

Доказательство. С учетом того, что математическое ожидание М(Х) и квадрат математического ожидания М2(Х) – величины постоянные, можно записать:

Применим эту формулу для рассмотренного выше примера:

X

0 1 2
X2 0 1 4
p 0,0625 0,375 0,5625

 

Свойства дисперсии.

1) Дисперсия постоянной величины равна нулю.

2) Постоянный множитель можно выносить за знак дисперсии, возводя его в квадрат.

3) Дисперсия суммы двух независимых случайных величин равна сумме дисперсий этих величин.

4) Дисперсия разности двух независимых случайных величин равна сумме дисперсий этих величин. Справедливость этого равенства вытекает из свойства 2.

Теорема. Дисперсия числа появления события А в п независимых испытаний, в каждом из которых вероятность р появления события постоянна, равна произведению числа испытаний на вероятности появления и непоявления события в каждом испытании.

Среднее квадратическое отклонение. Определение. Средним квадратическим отклонением  случайной величины Х называется квадратный корень из дисперсии.

Теорема. Среднее квадратичное отклонение суммы конечного числа взаимно независимых случайных величин равно квадратному корню из суммы квадратов средних квадратических отклонений этих величин. Пример. Завод выпускает 96% изделий первого сорта и 4% изделий второго сорта. Наугад выбирают 1000 изделий. Пусть Х – число изделий первого сорта в данной выборке. Найти закон распределения, математическое ожидание и дисперсию случайной величины Х. Выбор каждого из 1000 изделий можно считать независимым испытанием, в котором вероятность появления изделия первого сорта одинакова и равна р = 0,96. Таким образом, закон распределения может считаться биноминальным.

Пример. Найти дисперсию дискретной случайной величины Х – числа появлений события А в двух независимых испытаниях, если вероятности появления этого события в каждом испытании равны и известно, что М(Х) = 0,9. Т.к. случайная величина Х распределена по биноминальному закону, то Пример. Производятся независимые испытания с одинаковой вероятностью появления события А в каждом испытании. Найти вероятность появления события А, если дисперсия числа появлений события в трех независимых испытаниях равна 0,63. По формуле дисперсии биноминального закона получаем:

Пример. Испытывается устройство, состоящее из четырех независимо работающих приборов. Вероятности отказа каждого из приборов равны соответственно р1=0,3; p2=0,4; p3=0,5; p4=0,6. Найти математическое ожидание и дисперсию числа отказавших приборов. Принимая за случайную величину число отказавших  приборов, видим что эта случайная величина может принимать значения 0, 1, 2, 3 или 4. Для составления закона распределения этой случайной величины необходимо определить соответствующие вероятности. Примем . 1) Не отказал ни один прибор. 2) Отказал один из приборов. 0,302. 3) Отказали два прибора. 4) Отказали три прибора. 5) Отказали все приборы. Получаем закон распределения:

x 0 1 2 3 4
x2 0 1 4 9 16
p 0,084 0,302 0,38 0,198 0,036

 

 Математическое ожидание: Дисперсия: