Аналит. геометрия | Диф. уравнения | Элемен. математика | ТФКП | Билеты | Mathematica | MATLAB | Maple 7
1 семестр | 2 семестр | 3 семестр | 4 семестр | Мат. анализ ч1 | Мат. анализ ч2 | Мат. анализ ч3 | Мат. анализ ч4 | Строение атомных ядер | Модели атомных ядер | Ядерные реакции | Термодинамика | Магнитое поле | Оптика | Механика

Тепловое излучение Квантовая физика

Квантование момента импульса

Другое “скрытое движение” внутри квантового объекта проявляется в наличии момента импульса его состояния. В случае, например, стоячей электронной волны в поле ядра атома момент импульса не определяется с помощью суммирования элементарных моментов импульсов, его (момента импульса) наличие или отсутствие явной связи с некоторым движением не обнаруживает. Однако, у нас нет и оснований считать, что момент импульса в этом случае создается как-то иначе, чем в физике обыкновенной, как-то без движения. Вспомните, что мы говорили об импульсе электрона в одномерной потенциальной яме.

 

При решении уравнения Шрёдингера определяется лишь модуль (точнее, квадрат модуля) момента импульса и одна из проекций (составляющих?) момента импульса. Но - не любая, а лишь проекция на ось симметрии квадрата модуля волновой функции (ось квантования). Так что обычное небрежное замечание, что может быть определена лишь одна из проекций Mx, My или Mz значит не более, чем утверждение, что ось квантования мы можем обозначить любой буквой. И направить ее, как нам захочется

Несимметричные и несинусоидальные режимы в трехфазных цепях

Попробуем представить себе обособленный, не испытывающий внешних воздействий атом. Как направлен его момент импульса? Как направлена ось симметрии состояния? Видимо, ответ должен быть такой - как угодно. Положим, мы хотим определить эти направления. Если Вы сразу вспомните, что измерения характеристик квантового состояния сопряжены с изменением самого состояния, это очень хорошо. Но - тем не менее.

Направление момента импульса нам определить никак не удастся - оно не определяет каких-нибудь физических процессов или их характеристик. И здесь мы встречаемся с изумительной гармонией: то, что мы не можем определить экспериментально, не может быть и рассчитано. И это, видимо, должно нас радовать, это означает, что наши уравнения описывают реальные физические процессы. Эта гармония не является особенностью квантовой механики. Так же обстоит дело и с потенциальной энергией - она определена с точностью до произвольного слагаемого. Экспериментально определяется только изменение, приращение потенциальной энергии. Соответственно, у нас нет и возможности рассчитать однозначное ее значение.

Теперь - ось квантования. Если мы поместим атом в электрическое или магнитное поле, она окажется направленной вдоль поля. Магнитное квантовое число m определяет составляющую момента импульса электрона вдоль оси квантования. Экспериментально это проявляется в том, что в результате взаимодействия с полем изменяется энергия состояния. Это изменение энергии пропорционально величине магнитного поля и составляющей магнитного момента вдоль оси квантования. Величина магнитного момента считается пропорциональной механическому моменту, и изменение энергии электрона в магнитном поле, таким образом, связывается с магнитным квантовым числом. Почему оно так и называется.

 

Высшая математика - лекции, курсовые, типовые задания, примеры решения задач Основы математического анализа