Аналит. геометрия | Диф. уравнения | Элемен. математика | ТФКП | Билеты | Mathematica | MATLAB | Maple 7
1 семестр | 2 семестр | 3 семестр | 4 семестр | Мат. анализ ч1 | Мат. анализ ч2 | Мат. анализ ч3 | Мат. анализ ч4 | Строение атомных ядер | Модели атомных ядер | Ядерные реакции | Термодинамика | Магнитое поле | Оптика | Механика

Тепловое излучение Квантовая физика

“Внутреннее движение” квантового состояния

Все то, о чем мы сейчас ведем речь, вообще говоря, не имеет прямого отношения к решению задач о поведении электрона в том или ином случае. Просто слишком часто квантовая физика противопоставляется классической, тогда как в ряде своих проявлений новая физика оказывается прямой “наследницей” старой.

Мы говорили о том, что принципиально новое привносит квантование в физику. Неплохо отметить и те воззрения, что могут быть оставлены без изменений.

 

Обратимся вновь к задаче об электроне в потенциальной яме. Квадрат модуля Y-функции для любого n является функцией координаты, не зависит от времени:

 

.

Расчет трехфазной несимметричной электрической цепи с двигательной нагрузкой (в исходной схеме выключатель 1S замкнут)

Никакого “движения материи” в этом выражении не видно. И тем не менее энергию электрона мы можем подсчитать как кинетическую энергию , тем не менее на стенку ямы действует сила . В этом не будет ничего загадочного, если мы не станем отказывать волне Y-функции в реальности, будем помнить, что стоячая волна представляет собой сумму бегущих в противоположных направлениях волн, которые отражаются от стенок. Волна переносит импульс и при отражении происходит изменение его направления. Конечно, как непрерывный процесс, а не “мгновенное”, как при корпускулярном представлении электрона.

При этом то обстоятельство, что функция  не зависит от времени, дает хорошее, естественное объяснение того, почему в стационарном состоянии не происходит излучения электромагнитной энергии - нет колебаний электрического заряда.

 

Линейному волновому уравнению Шрёдингера удовлетворяет и волновая функция, представляющая собой суперпозицию двух (стоячих) волн с разными частотами и волновыми числами:

 

.

 

Квадрат модуля этой функции:

 

.

 

Выражение получается достаточно громоздким, но легко видеть, что его можно записать в виде:

 

.

 

Если не придумывать для квантового объекта какого-то нового способа излучения электромагнитной энергии кроме осцилляции заряда, то это выражение “объяснит” нам, почему при переходе электрона с одного энергетического уровня на другой, в процессе такого перехода происходит поглощение или излучение электромагнитной энергии на частоте .

Иногда говорят, что наблюдаются только стационарные состояния электрона, например, в случае атома водорода

 

.

 

Пожалуй, можно сказать, что это утверждение верно с точностью до наоборот: наблюдается, собственно, излучение или поглощение электромагнитной энергии, которые происходят при изменении энергии электрона от одного квантованного значения до другого. Если, конечно, признать, что процесс, например, излучения занимает некоторое время, и что в квантовой физике выполняется закон сохранения энергии.

 

Подчеркну еще раз: предлагаемые рассуждения никаким образом не влияют на практическое решение квантовомеханических задач. Речь идет только о “картинке” процесса, которую Вы можете иметь у себя в голове. Если Вам понятнее утверждение, что в квантовой физике излучение никак не связано с осцилляцией заряда, то - воля Ваша. Правда, давно было сказано: “Не умножай число сущностей без надобности”.

Но при этом необходимо отметить и такое обстоятельство. Экпериментально наблюдать осцилляцию заряда мы не можем - при попытке такого наблюдения разрушится “хрупкая индивидуальность квантового состояния”. Об осцилляции свидетельствует лишь то, что происходит излучение или поглощение электромагнитной энергии.

Высшая математика - лекции, курсовые, типовые задания, примеры решения задач Основы математического анализа