Аналит. геометрия | Диф. уравнения | Элемен. математика | ТФКП | Билеты | Mathematica | MATLAB | Maple 7
1 семестр | 2 семестр | 3 семестр | 4 семестр | Мат. анализ ч1 | Мат. анализ ч2 | Мат. анализ ч3 | Мат. анализ ч4 | Строение атомных ядер | Модели атомных ядер | Ядерные реакции | Термодинамика | Магнитое поле | Оптика | Механика

Тепловое излучение Квантовая физика

Стоячие волны. Рефракция

Мы рассмотрели стоячие волны для Y-функции в бесконечно глубокой одномерной потенциальной яме. Но и в других случаях стационарное решение уравнения Шрёдингера представляет собой стоячую волну, хотя это не всегда столь очевидно.

Какой может быть, например, стоячая волна Y-функции электрона в поле протона, в атоме водорода? Ведь в этом случае, вроде бы, вообще нет каких-нибудь отражающих волну стенок. И в этой связи мы вспомним о явлении, которое, вообще говоря, заслуживает более детального разговора, - о рефракции.

Говоря о прямолинейности распространения света, например, мы подразумевали однородную среду. Но в неоднородной среде направление распространения волны не остается постоянным.

  Z

 

  1    

 

 

 

  2   

Пусть в неоднородной среде распространяется волна с плоским фронтом. И пусть скорость волны (фазовая) возрастает в направлении оси Z, параллельной фронту. Основываясь на принципе Гюйгенса-Френеля, рассмотрим каждую точку фронта волны как источник вторичных волн. Тогда “новый” фронт (плоскость, касательная к волновым поверхностям вторичных источников) не будет параллелен старому, будет происходить искривление луча, понимаемого как кривая, касательная к которой перпендикулярна фронту волны. Вот это явление “искривления” луча в неоднородной среде и называется рефракцией. Определить активную мощность, потребляемую всеми приемниками в симметричном и несимметричном режимах работы.

Проявления рефракции весьма разнообразны, и подробный разговор о ней мог бы быть достаточно интересен. Но - нельзя объять необъятное и особенно за весьма ограниченное время, которое есть в нашем распоряжении. Однако, посмотрим, как это явление проявляется в атоме водорода.

В поле протона по мере увеличения радиуса потенциальная энергия электрона возрастает. При постоянной полной энергии E = const это означает уменьшение кинетической энергии, уменьшение импульса:

 

;    .

 

Так что уменьшение импульса означает и увеличение фазовой скорости v при увеличении радиуса r. Таким образом, луч электронной волны будет искривляться в направлении к протону и при определенных условиях может стать окружностью. При каких?

Условие, которое должно быть выполнено, достаточно очевидно. Поскольку длина окружности пропорциональна радиусу, пропорциональной радиусу должна быть и фазовая скорость. Таким образом мы получаем:

 

.

 

 

Исключив фазовую скорость, получим выражение для зависимости импульса от радиуса:

 

.

 

Запишем вновь выражение для энергии электрона и продифференцируем его по радиусу. С учетом выражения для  и условия E = const мы получим:

 

.

 

Нам осталось лишь потребовать выполнения очевидного для существования стоячей волны условия - на длине орбиты должно укладываться целое число длин волн :

 

.

 

Из двух подчеркнутых выражений следует:

 

.

 

Таким образом, выражение для энергии электрона принимает вид:

 

 

.

 

Это выражение для электрона совпадает с точным значением, полученным из решения уравнения Шрёдингера. Наши оценочные расчеты никак не избавляют от необходимости решать это уравнение. Они должны лишь помочь понять, что квантовое состояние электрона в атоме описывается стоячей волной.

Высшая математика - лекции, курсовые, типовые задания, примеры решения задач Основы математического анализа