Аналит. геометрия | Диф. уравнения | Элемен. математика | ТФКП | Билеты | Mathematica | MATLAB | Maple 7
1 семестр | 2 семестр | 3 семестр | 4 семестр | Мат. анализ ч1 | Мат. анализ ч2 | Мат. анализ ч3 | Мат. анализ ч4 | Строение атомных ядер | Модели атомных ядер | Ядерные реакции | Термодинамика | Магнитое поле | Оптика | Механика

Тепловое излучение Квантовая физика

Фотоны

При подсчете плотности равновесного теплового излучения присвоение каждой степени свободы (стоячей волне) энергии kT приводит к абсурдному результату - бесконечной плотности лучистой энергии. При анализе равновесного теплового излучения потребовался совершенно новый подход - введение квантования энергии в виде “порций” величиной ћw, и количество таких порций определяется распределением Больцмана. Последующие исследования показали, что поглощение или излучение электромагнитной энергии происходит такими же “порциями”, квантами.

В конце концов кванты электромагнитной энергии стали восприниматься как особые частицы, фотоны. И для этого были достаточно серьезные основания.

 

                  DV

 

 



           q   DW

 

          Ds   R   DR

Пусть в некоторой полости находится равновесное тепловое излучение. Подсчитаем давление, которое оно оказывает на поглощающую поверхность (отражающую).

В объеме DV “запасена” энергия u×DV. Из этой энергии на площадку Ds попадет часть, пропорциональная телесному углу  - под таким углом площадка Ds “видна” из элементарного объема DV:

 

.

 

С этой энергией, равной mc2, площадке будет передан импульс mc= и подействует сила . Вклад в давление даст лишь нормальная составляющая этой силы и поэтому выражение для давления будет иметь вид:

 

.

 

Мы выбрали элементарный объем в виде небольшого кубика. Но под таким же углом площадка Ds видна из любой точки колечка радиуса , показанного на рисунке. Поэтому в качестве элементарного объема может быть выбрано это колечко, поперечное сечение которого :

;

 

.

 

Прежде всего нас будет интересовать давление на зеркальную поверхность, которая вдвое больше выписанной величины. Таким образом, после интегрирования по q в пределах от нуля до p/2 мы получаем

.

 

Но это же выражение мы можем получить и с помощью других рассуждений. Используя понятие фотона, мы скажем, что в объеме DV содержится nwdw фотонов с частотой в пределах от w до w+dw и с импульсом . На площадку Ds попадет

 

 

фотонов и они передадут (зеркальной) поверхности импульс

 

.

 

Время “падения” этих фотонов на площадку будет . Чтобы найти подействовавшую на площадку силу, нам надо разделить на это время переданный импульс. Нормальная к площадке составляющая силы определит давление на площадку:

;

 

.

 

Нам осталось, как мы это делали раньше, вместо кубика выбрать элементарный объем в виде колечка, и мы получим:

 

.

 

После интегрирования по q и w мы получаем то же самое выражение для давления:

;       .

 

Таким образом, и волновое рассмотрение равновесного теплового излучения и рассмотрение его как фотонного газа дает один и тот же результат.

Мы рассмотрели в качестве примера задачу о давлении равновесного теплового излучения на поверхность с двух разных позиций вот для чего. Сейчас, когда мы еще не слишком далеко зашли в анализе проблемы квантования, полезно вспомнить, что для определения “концентрации фотонов” мы воспользовались выражением для   . Иначе говоря, мы произвели некоторую формальную замену переменных - объемную плотность стоячих волн мы заменили на концентрацию фотонов.

Но это не такая “безобидная” замена, как может показаться. Чтобы атом поглотил энергию ћw, он должен какое-то время находиться в переменном электромагнитном поле соответствующей частоты. То же самое можно сказать и об излучении - оно должно “занять” некоторое время. А говоря об излучении или поглощении фотона, мы теряем ощущение временной протяженности актов поглощения и излучения. Получается так, будто поглощение или излучение фотона происходит “мгновенно”, поскольку из рассмотрения исключается процесс излучения или поглощения. Между тем время излучения или поглощения иногда бывает очень существенно, как мы увидим в дальнейшем.

 

Высшая математика - лекции, курсовые, типовые задания, примеры решения задач Основы математического анализа