Аналит. геометрия | Диф. уравнения | Элемен. математика | ТФКП | Билеты | Mathematica | MATLAB | Maple 7
1 семестр | 2 семестр | 3 семестр | 4 семестр | Мат. анализ ч1 | Мат. анализ ч2 | Мат. анализ ч3 | Мат. анализ ч4 | Строение атомных ядер | Модели атомных ядер | Ядерные реакции | Термодинамика | Магнитое поле | Оптика | Механика

Учебник физики, раздел Оптика

 

Преобразования Лоренца

 

  Y    Y’

           

  K    K’

 

                    v

 

  O     O’              X,X’

До сих пор у нас не возникало необходимости переходить из одной системы отсчета в другую при больших скоростях относительного движения этих систем. Потому мы пользовались преобразования Галилея, не учитывающими релятивистские эффекты. Но теперь нам понадобятся преобразования Лоренца. При движении со скоростью v некоторой системы K’ вдоль оси OX “неподвижной” системы K они имеют вид:

 

;       ;

;        .

 

Мы выписали прямые и обратные преобразования. Отмеченные штрихами величины относятся к движущейся системе отсчета.

 

Чтобы немного привыкнуть к этим преобразованиям, решим две частные задачи, не имеющие прямого отношения к волнам.

Рассмотрим движение некоторого стержня вдоль оси OX. Свяжем с ним движущуюся систему отсчета K’. Его длина в этой системе отсчета . Заметим, что, поскольку стержень в этой системе неподвижен, координаты его концов могут быть определены в произвольные моменты времени - координаты не изменяются во времени. Обратите внимание на это существенное обстоятельство.

Получим теперь выражение для длины стержня в неподвижной системе отсчета. Запишем такое выражение:

 

.

 

Чтобы определить длину движущегося стержня в неподвижной системе отсчета, нам следует определить координаты его концов в один и тот же момент времени, т.е. положить . При этом условии  - длина стержня в неподвижной системе отсчета. Таким образом, длина движущегося стержня оказывается меньше его “собственной” длины:

 

.

 

В таком случае говорят о лоренцовом сокращении длины движущегося стержня.

Предположим теперь, что в неподвижной системе отсчета произошли два события, разделенные промежутком времени . Например, это может быть промежуток времени между рождением и распадом некоторой нестабильной частицы. Считая, что частица движется со скоростью v, свяжем с ней систему отсчета. В этой системе промежуток времени между событиями, которые, заметим, в ней произошли в одной и той же точке с координатой x’, будет:

 

;

 

.

 

В таком случае говорят  о замедлении хода часов в движущейся системе отсчета.

Это замедление хода часов (или хода времени) приводит к любопытному эффекту. Исследуя некоторую нестабильную частицу, мы можем измерить ее “время жизни” t¢ которое является характеристикой частицы, а не системы отсчета. Если такая частица после рождения движется со скоростью v, мы можем подумать, что до момента распада она пройдет путь vt¢ - от рождения и до распада в связанной с частицей системе отсчета пройдет время t¢. Между тем пройденный за это время путь мы, естественно, измеряем в неподвижной системе отсчета. И тогда этот путь окажется намного больше, если скорость частицы близка к скорости света:

 

 .

 

Так что, измеряя пройденное от момента рождения частицы до ее распада расстояние, можно непосредственно проверить вывод о замедлении хода времени в движущейся системе отсчета.

Высшая математика - лекции, курсовые, типовые задания, примеры решения задач Основы математического анализа