Аналит. геометрия | Диф. уравнения | Элемен. математика | ТФКП | Билеты | Mathematica | MATLAB | Maple 7
1 семестр | 2 семестр | 3 семестр | 4 семестр | Мат. анализ ч1 | Мат. анализ ч2 | Мат. анализ ч3 | Мат. анализ ч4 | Строение атомных ядер | Модели атомных ядер | Ядерные реакции | Термодинамика | Магнитое поле | Оптика | Механика

Учебник физики, раздел Оптика

 

Эффект Зеемана и поляризация

Исходя из понимания, что излучение световой волны происходит в результате колебаний электрического диполя, рассмотрим поведение диполя в магнитном поле.

На движущийся со скоростью  действует сила Лоренца

 

.

 

В результате, естественно, характер движения электрона в ходе колебаний изменится. Перейдем, однако, во вращающуюся систему координат. В такой системе на тот же электрон будет действовать сила Кориолиса

 

,

 

где  - скорость вращения системы отсчета.

  ,Z             Y

                        pxy

            

 



                     t   X

 

 

Зависимость этих сил от скорости  с одной стороны, и от поля   и от скорости вращения с другой -  одинаковы. Это обстоятельство позволяет нам просто решить задачу о колебаниях электрического диполя в магнитном поле: направив скорость вращения системы вдоль магнитного поля и подобрав нужную скорость вращения системы, мы можем добиться компенсации силы Лоренца и силы Кориолиса. В результате во вращающейся системе отсчета колебания будет происходить “обыкновенным” способом, как они происходили бы в отсутствии магнитного поля. Для этого необходимо лишь выполнение условия

 

 

при подходящем направлении вращения системы.

Высказанные утверждения составляют суть (и доказательство) теоремы Лармора.

 

Нас, разумеется, будет интересовать излучение в лабораторной, неподвижной системе отсчета. Такое излучение в определенном направлении определяется составляющей вектора дипольного момента, перпендикулярной этому направлению.

Проще всего обстоит дело с z-составляющей амплитуда ее колебаний остается неизменной. Мы можем записать для нее выражение . Это некоторый колеблющийся диполь, направленный вдоль оси OZ - его излучение имеет максимум в плоскости XOY.

Запишем теперь выражения для других составляющих:

 

;

 

.

 

Преобразуем эти выражения:

 

 

 

.

 

Итак, мы убедились, что в направлении оси OZ, в направлении магнитного поля диполь излучает две волны. Они различаются частотами () и поляризованы по кругу в противоположных направлениях.

    Z     

  c

                c

                   Y

 

                 c

    0               X

Вообще говоря, для анализа эффекта Зеемана необходим квантовый подход. Позднее мы еще вернемся к этому вопросу, а пока лишь отметим, что классическая физика объясняет только так называемый простой эффект Зеемана. На основе эффекта Зеемана ниже будет проанализирован эффект магнитного вращения плоскости поляризации света.

 

 

 

 

 

 

 

 

Высшая математика - лекции, курсовые, типовые задания, примеры решения задач Основы математического анализа