Аналит. геометрия | Диф. уравнения | Элемен. математика | ТФКП | Билеты | Mathematica | MATLAB | Maple 7
1 семестр | 2 семестр | 3 семестр | 4 семестр | Мат. анализ ч1 | Мат. анализ ч2 | Мат. анализ ч3 | Мат. анализ ч4 | Строение атомных ядер | Модели атомных ядер | Ядерные реакции | Термодинамика | Магнитое поле | Оптика | Механика

Учебник физики, раздел Оптика

Зонная пластинка

Попробуем разобраться, к каким эффектам приводит дифракция на круглом отверстии. При этом не будем ни на минуту забывать, что спираль Френеля состоит из элементарных векторов, которые, соответственно, представляют колебания от элементарных колечек круглого фронта падающей волны. Вся спираль представляет колебания от полностью открытого фронта (k ), если открыта часть зон Френеля, “реализуется” лишь часть спирали. Амплитуда суммарных колебаний представляется длиной вектора, соединяющего начало спирали и ее конец.

     0,5             1            1,5            2             2,5

 

 

 

 

 



    E0

 

 

                                

 

Проиллюстрируем эти слова. На рисунке показаны случаи, когда открыта половина первой зоны, первая зона, полторы зона, две и две с половиной. Иначе говоря, когда радиус круглого отверстия равен радиусу половине первой зоны Френеля, радиусу первой зоны и т.д.

      1              2              3             4              5

 

 

 

 

 

 



              ...

 

;     ;    ;

Витки спирали для первых зон Френеля им будем считать окружностями. Поэтому на рисунке выписаны такие значения амплитуды суммарных колебаний E. Подсчет амплитуд колебаний производится приближенно, но для нас важно понимание причин изменения амплитуд при изменении радиуса отверстия, хотя бы и за счет некоторого снижения точности.

 

При суммировании амплитуд колебаний от первой, второй и т.д. зон Френеля мы должны получить амплитуду E0. Но если бы мы складывали только колебания от четных или только от нечетных зон Френеля, мы получили бы колебания с амплитудой, модуль которой намного превосходит величину E0. Действительно, вместо суммы членов знакопеременного ряда мы бы тогда складывали значения E одного знака.

Технически такое сложение осуществляется с помощью зонной пластинки. Она представляет собой систему непрозрачных концентрических колец, которые закрывают, например, нечетные зоны Френеля. Амплитуда колебаний в точке наблюдения при использовании такой пластинки сильно возрастает.

Зонная пластинка действует в этом случае подобно линзе, которая фокусирует свет в некоторой точке. Соответственно, для зонной пластинки может быть введено фокусное расстояние. На рисунке показана зонная пластинка, закрывающая нечетные зоны Френеля. Разность хода нарисованных лучей равна , и амплитуда колебаний от открытых зон при одинаковых знаках складываются по модулю. Поэтому и получается большая интенсивность колебаний в точке наблюдения, фокусировка лучей.

 зоны Френеля: 6 4 2

 

 

 

 

 

 

 



                         P

          b

 

 

Следующим шагом в своего рода совершенствовании зонной пластинки является превращение ее в прозрачную фазовую зонную пластинку. Вместо того, чтобы закрывать, например, нечетные зоны Френеля, мы можем изменять на  фазу приходящих от них колебаний. Тогда амплитуда колебаний в точке наблюдения примерно удвоится. Чтобы достигнуть этого, необходимо изменить для них оптическую длину пут на половину длинны волны, обеспечить выполнение условия , где d - толщина фазовой пластины из материала с показателем преломления n.

 

 

 

 

 

 

 

 

Высшая математика - лекции, курсовые, типовые задания, примеры решения задач Основы математического анализа