Аналит. геометрия | Диф. уравнения | Элемен. математика | ТФКП | Билеты | Mathematica | MATLAB | Maple 7
1 семестр | 2 семестр | 3 семестр | 4 семестр | Мат. анализ ч1 | Мат. анализ ч2 | Мат. анализ ч3 | Мат. анализ ч4 | Строение атомных ядер | Модели атомных ядер | Ядерные реакции | Термодинамика | Магнитое поле | Оптика | Механика

Учебник физики, раздел Оптика

 

Периодически расположенные точечные источники волн

Рассмотрим интересный и весьма важный для практики случай, когда точечные источники волн расположены в виде цепочки. Пусть расстояние между источниками d составляет несколько длин волн и разность фаз колебаний равна нулю.

 

 

 

 

 

 d

 

 



Применим ту же технику рассуждений, что и для случая тесного (непрерывного) расположения точечных источников. Рассмотрим сначала нормальное к цепочке направление.

На достаточно большом удалении от источников узкий (несколько расстояний между источниками) участок фронта кольцевой волны можно считать плоским (прямолинейным). Колебания от отдельных источников, расстояния до которых примерно одинаковы, будут происходить в выделенной области наблюдения в фазе, усиливая друг друга. В этом направлении будет распространяться плоская волна.

     

 

 

 

 

 



 

Но есть направления, в которых распространения волны происходить не будет. Попробует догадаться, каким может быть такое направление.

Будем постепенно увеличивать угол . При этом в достаточно удаленной от цепочки источников области наблюдения  станет нарастать разность фаз колебаний, вызванных разными источниками. Пусть при некотором значении угла  будет выполняться условие

 

;       ,

 

где N -  количество источников в цепочке. Если расстояние между источниками d порядка нескольких  и количество источников велико (например, более ста), значение  угла  будет очень маленьким. На рисунке этот угол показан достаточно большим, правдоподобно маленьким изобразить его нам не удастся.

При этом условии колебания от первого источника волн и от источника с номером N/2 в области наблюдения будут происходить в противофазе, погасят друг друга. Колебания от второго источника будут погашены колебаниями от источника с номером N/2+1 и т.д. Следовательно, такая цепочка будет излучать волну в пределах чрезвычайно малого угла . Мы получим практически плоскую волну.

Однако, при выбранной нами величине расстояния d порядка нескольких длин волн это не будет единственным направлением распространения волны и, соответственно, потока энергии. Действительно, если выполняется условие

 

,

 

где k - целое число, то колебания от отдельных источников в области наблюдения будут происходить с разностью фаз 2k, т.е. будут складываться, усиливать друг друга. В этих направлениях, как и в направлении нормали к линии расположения источников ( = 0), будет распространяться примерно плоская волна. Эти направления называют направлениями на главные максимумы k-того порядка.

Большим значениям k соответствуют большие разности расстояний до области наблюдения. Естественно, эта разность (разность хода) не может стать больше чем d. Поэтому максимальное значение порядка максимума k определяется условием

 

.

 

Для получения узкого пучка радиоизлучения используется антенна с расположенными в ряд дипольными излучателями. Если создать некоторую разность фаз колебаний соседних осцилляторов, направления главного максимума нулевого порядка будет отличаться от нормали (этот эффект мы обсуждали для тесного, непрерывного расположения точечных источников). Таким способом может быть осуществлено изменение направления радиоизлучения (сканирование) без поворота антенны.

 

Высшая математика - лекции, курсовые, типовые задания, примеры решения задач Основы математического анализа