Аналит. геометрия | Диф. уравнения | Элемен. математика | ТФКП | Билеты | Mathematica | MATLAB | Maple 7
1 семестр | 2 семестр | 3 семестр | 4 семестр | Мат. анализ ч1 | Мат. анализ ч2 | Мат. анализ ч3 | Мат. анализ ч4 | Строение атомных ядер | Модели атомных ядер | Ядерные реакции | Термодинамика | Магнитое поле | Оптика | Механика

Учебник физики, раздел Оптика

 

Дифракционная решетка как спектральный прибор

Очевидно, что дифракционная решетка может быть использована для разворачивания падающего на нее света в спектр, когда угловое положение максимума зависит от длины волны . При  наблюдается максимум для всех длин волн. Но (угловые) положения максимумов k-того порядка при k>1 различны для разных длин волн. Это следует из условия максимума . То, как “быстро” изменяется угол , под которым наблюдается максимум, при изменении длины волны определяет угловую дисперсию решетки  (это - определение термина)

 

.

 

Как видно, дисперсия возрастает с ростом порядка максимума k и с уменьшением периода решетки d. Обратите внимание, что в знаменателе стоит , который уменьшается с увеличением угла.

Естественно, чем больше угловая дисперсия, тем успешнее могут быть разрешены близкие по длине линии спектра, наблюдаться как отдельные линии. Попробуем разобраться с вопросом разрешения линий детальнее.

 

 

 

 

 

 

 



                         

             

 

 

 

 

 

 

                         

             

 

Пусть в спектре имеется пара линий с близкими длинами волн 1 и 2, разность длин волн . Любая линия обладает некоторой “естественной” шириной, которая предполагается меньше разности длин вол самих линий: 1<.

Но даже если бы ширина каждой линии была равна нулю, при наблюдении излучения после дифракционной решетки каждой линии будет отвечать некоторая полоса (на рисунке внизу). Она определяется свойствами самой решетки и для разрешения близких по длине волны линий эта ширина должна быть меньше или равна .

В физике вводится величина, называемая разрешающей способностью:

 

.

 

В этом выражении  означает минимальную разность длин волн линий, которые могут наблюдаться в спектре как отдельные линии, и величина R является характеристикой спектрального прибора (например, дифракционной решетки).

Подсчитаем разрешающую способность дифракционной решетки. Для этой цели используется критерий Рэлея: линии считаются разрешенными, наблюдаются как отдельные линии, если при разложении в спектр максимум одной линии совпадает с минимумом другой. Ширина дифракционной полосы (отвечающей определенной линии) определяется положением ближайших к максимуму минимумов. Положение минимумов, в свою очередь, определяется выражениями

 

;       k’0,N,2N,...

 

Если k’ кратно количеству щелей N, то наблюдается максимум - знаменатель второго сомножителя выражения для распределения амплитуды колебаний в удаленной зоне наблюдения обращается в нуль:

 

.

 

Таким образом, максимум первой волны наблюдается при условии . Потребуем, чтобы при этом же угле наблюдался минимум второй волны:

 

;

 

.

 

Считая, что  и поэтому пренебреая последним слагаемым в выписанном выражении, получаем:

 

;        .

 

Таким образом, разрешающая способность тем выше, чем больше порядок интерференционного максимума, и чем больше количество щелей решетки.

Дифракция на круглом отверстии

В плане историческом теоретическое исследование явлений дифракции было исключительно важным для утверждения представлений о волновой природе света. Что и говорить, правильные представления в каждой области очень важны для общего правильного представления о Природе. Только в таком случае мы можем успешно использовать явления всякого рода для наших нужд.

В оптике различные приборы по понятным причинам имеют круглое входные отверстия, диафрагмы и проч. И неизбежная дифракция на круглых отверстиях ограничивает возможности этих приборов. При знакомстве, например, с линзой мы ограничивались параксиальными лучами, достаточно узкими пучками света. Лишь при этом условии преломляющие поверхности линзы можно изготавливать сферическими. Но это, естественно, ограничивает возможности изготовленных из таких линз оптических приборов и, в частности, из-за дифракции. А вот, например, для астрономических наблюдений необходимы грандиозно большие входные отверстия, изменяемые метрами. В этом случае задача изготовления телескопа неимоверно усложняется, телескопы с такими отверстиями очень дороги и, соответственно, уникальны.

Вот для некоторого, хотя бы, понимания этих проблем нам и необходимо заняться обсуждением дифракции на круглых отверстиях.

Высшая математика - лекции, курсовые, типовые задания, примеры решения задач Основы математического анализа