Аналит. геометрия | Диф. уравнения | Элемен. математика | ТФКП | Билеты | Mathematica | MATLAB | Maple 7
1 семестр | 2 семестр | 3 семестр | 4 семестр | Мат. анализ ч1 | Мат. анализ ч2 | Мат. анализ ч3 | Мат. анализ ч4 | Строение атомных ядер | Модели атомных ядер | Ядерные реакции | Термодинамика | Магнитое поле | Оптика | Механика

Учебник физики, раздел Оптика

Интерференция

Этим словом обозначается, в общем-то, всего лишь сложение волн. Всего лишь сложение, но при этом возникает много вопросов и сложностей. Прежде всего дело в том, что волна является весьма непростым объектом, объектом более сложным, чем нам это представляется на данном этапе.

Кроме того многообразными и не очень простыми оказываются схемы наблюдения разных явлений, возникающих в результате сложения волн, их интерференции. Так что лучше всего заранее настроится на обсуждение многочисленных и достаточно непростых вопросов.

Двухлучевая интерференция. Точечные источники

  X

            

  x

 S’

  d                     0

 S”         l

      

 

 

Собственно, эту задачу мы уже решали - при падении на экран двух волн от разнесенных на расстояние d точечных источников должны наблюдаться минимумы и максимумы интенсивности. Если расстояние до экрана l>>d, то, как мы выяснили ранее, расстояние между минимумами оказывается равным

.

Обычно расстояние между источниками составляет несколько длин волн, и расстояние между минимумами x оказывается не слишком маленьким.

Мы кроме того считаем, что координата точки наблюдения x<<l, и это обстоятельство позволяет ввести понятие углового расстояния между источниками   d/l. Тогда выражение для ширины интерференционного максимума может быть записано в виде:

 

.

 

Получим это выражение еще одним способом. На достаточно большом расстоянии от источников приходящие от них волны можно считать плоскими, и вблизи нуля на оси OX углы падения этих волн будут равны  и . Далее, при падении плоской волны на экран, как мы в свое время выяснили, фаза электромагнитных колебаний будет зависеть от координаты:

 

.

 

Проинтегрировав эти уравнения, мы получим такие выражения для зависимости фаз колебаний от координаты:

 

.

 

Мы посчитали фазы равными нулю при x=0. В этой точке будет наблюдаться максимум колебаний. Ближайший к нему минимум будет наблюдаться на расстоянии полуширины линии x/2, которое определяется условием

 

 

 



;         .

 

 Y

 

 l(y)

 S

              0

(y)=d/l

Мы рассматривали, как это обычно и делается, интерференцию волн от точечных источников, от которых, стало быть, исходят сферические волны. При удалении от точки наблюдения в перпендикулярном к плоскости рисунка направлении (вдоль оси OY) будет уменьшаться угловое расстояние между источниками , и полосы будут наблюдаться в виде расходящихся дуг.

На практике, однако, вместо точечных источников используются параллельные оси OY щели, которые освещаются некоторыми источниками света. В пределах щели происходят электромагнитные колебания и они действуют как множество непрерывно расположенных точечных источников. В этом случае интерферируют цилиндрические волны и интерференционные полосы параллельны друг другу.

 

 

 

Высшая математика - лекции, курсовые, типовые задания, примеры решения задач Основы математического анализа