Аналит. геометрия | Диф. уравнения | Элемен. математика | ТФКП | Билеты | Mathematica | MATLAB | Maple 7
1 семестр | 2 семестр | 3 семестр | 4 семестр | Мат. анализ ч1 | Мат. анализ ч2 | Мат. анализ ч3 | Мат. анализ ч4 | Строение атомных ядер | Модели атомных ядер | Ядерные реакции | Термодинамика | Магнитое поле | Оптика | Механика

Учебник физики, раздел Оптика

Эллиптическое зеркало. Уточненная формулировка принципа Ферма

 

 

 

 

 

 



    A                 B

 

 

 



Эллипс представляет собой геометрическое место точек, сумма расстояний от которых до некоторых двух точек (фокусов эллипса) постоянна. Благодаря этому зеркало, сечение которого представляет собой эллипс, оказывается исключительно интересным. При отражении от такого зеркала каждый луч, вышедший из фокуса A после отражения попадает в фокус B.

Мы рассматривали отражение от плоского зеркала, тогда путь распространения был минимальным. В случае эллиптического зеркала все пути распространения света одинаковы. Как и в случае плоского зеркала, отраженная волна представляет собой результат излучения колеблющихся электронов, колебания которых вызвала падающая волна Будем считать, что источник волн, излучатель находится в точке A. Но теперь вызванные движением разных электронов электромагнитные колебания в точке B будут происходить с одинаковыми фазами. Векторная диаграмма будет выглядеть иначе - отдельные векторы не будут повернуты один по отношению к другому, будут лежать на одной прямой.

 

 

 

 

 



    A                 B

 

             С

Естественно, при таком отражении для каждого луча также будет справедлив закон отражения.

Если кривизна зеркала в точке отражения будет больше кривизны эллиптического зеркала, длина пути распространения (длина ломаной ACB) будет не минимальной, а максимальной. Но отражение в точке C будет происходить так же, как от эллиптического зеркала. Это вынуждает нас уточнить формулировку принципа Ферма: для пути распространения света определяющей оказывается не минимальность, а экстремальность этого пути. Или же длина пути не должна изменяться при смещении точки отражения.

В этой связи можно провести такие более доказательные рассуждения.

 

 

 

 



 B”

    A              B

 

С    B’

Луч CB  проходит также через точки B’ и B”. И если длины разных лучей, приходящих из точки A в точку B одинаковы, такого утверждения нельзя сделать для точек B’ и B”. Соответственно, и векторные диаграммы для сложения колебаний от отдельных электронов в этих точках будут выглядеть иначе - эти векторы не будут выстраиваться по одной прямой, станут скручиваться в “клубки”. Попробуйте самостоятельно разобраться, какая из приведенных на рисунке диаграмм относится к точке B’, а какая к точке B”.

 

 

 

 

 

 

 

 

 

 

 

 

 



Если Вам понятен смысл векторных диаграмм, Вы поймете и то, что такое различие их вида означает весьма существенное различие амплитуд колебаний в точке B (амплитуда велика) и точках B’ и B” с другой стороны. Говорят, что свет “фокусируется” в точке B, в этой точке находится изображение источника света A.

 

Высшая математика - лекции, курсовые, типовые задания, примеры решения задач Основы математического анализа