1 семестр | 2 семестр | 3 семестр | 4 семестр | Мат. анализ ч1 | Мат. анализ ч2 | Мат. анализ ч3 | Мат. анализ ч4 | Строение атомных ядер | Модели атомных ядер | Ядерные реакции | Термодинамика | Магнитое поле | Оптика | Механика |

Задачи по курсу Ядерная и нейтронная физика

Задача 3.3 Построить векторные диаграммы импульсов для упругого рассеяния нерелятивистской α-частицы на покоящемся ядре:

а) 6Li, 4Не, 2Н, если угол рассеяния в α-частицы в СЦИ равен 60º. В каком случае связь между кинетической энергией рассеянной α-частицы и углом ее рассеяния неоднозначна? Найти для этих трех случаев значения максимально возможного угла рассеяния α-частицы.

Решение

Для анализа упругого рассеяния α-частицы построим векторные диаграммы импульсов для всех трех случаев.

а) рассеяние α-частицы на ядре 6Li.

Отрезок АВ, изображающий импульс налетающей α-частицы, делим на 5 равных частей, т.к. mα : M(6Li) = 2 : 3. От точки А отсчитываем две части и ставим точку О. Из точки О радиусом ОВ проводим дугу ВD. Под углом= 60º из точки О проводим луч до пересечения с дугой ВD. Точку пересечения обозначаем буквой С и соединяем ее с точками А и В. Полученный отрезок АС и угол  изображают величину импульса α-частицы и направление ее движения после рассеяния в ЛСК, а отрезок СВ – и угол φ величину импульс ядра и направление движения ядра 6Li после соударения также в ЛСК. Для различных параметров удара точка С может располагаться на дуге ВD в любом месте от точки B и до точки D. При этом величина импульса α-частицы после рассеяния (длина отрезка АС) однозначно связана с углом  или углом . Следовательно и кинетическая энергия T = P2/2m в этом случае является однозначной функцией угла рассеяния а обеих системах координат. Максимальные углы рассеяния и в этом случае определяются положением точки С при ее совпадении с точкой D и равны π.

б) Рассеяние α-частицы на ядре 4Не.

Так как массы сталкивающихся частиц равны, то отрезок АВ делим на две равные части и проводим дугу ВD с центром в точке О. Далее построения не отличаются от построений в предыдущем пункте задачи. В этом случае связь кинетической энергии рассеянной α-частицы с углами рассеяния оказывается также однозначной в обеих системах координат. Предельное значение углатакже стремиться к π. Однако, как нетрудно заметить, предельное значение угла стремиться к π/2. Из этого следует важный вывод о том, что угол рассеяния двух тел с одинаковой массой не может превышать π/2.

в) рассеяние α-частицы на ядре 2Н.

Отрезок АВ, изображающий импульс налетающей α-частицы, делим на 3 равных части, т.к. mα : M(2Н) = 2 : 1. От точки А отсчитываем две части и ставим точку О. Далее построения не отличаются от построений в предыдущих пунктах а) и б). Из диаграммы следует, что одному значению угла рассеяния в ЛСК соответствуют две возможные величины импульса рассеянной α-частицы (отрезки AD и АС), а, следовательно, и два возможных значения кинетической энергии рассеянной α-частицы. Максимальное значение угла рассеяния α-частицы в СЦИ будет равно π. В ЛСК максимальное значение угла  определяется положением касательной . Из прямоугольного треугольника  сразу следует, что

и, следовательно,

.

Высшая математика - лекции, курсовые, типовые задания, примеры решения задач Основы математического анализа