1 семестр | 2 семестр | 3 семестр | 4 семестр | Мат. анализ ч1 | Мат. анализ ч2 | Мат. анализ ч3 | Мат. анализ ч4 | Строение атомных ядер | Модели атомных ядер | Ядерные реакции | Термодинамика | Магнитое поле | Оптика | Механика |

Основные постулаты квантовой механики


Эффект Комптона

 В 1922 г. Комптон (A. Compton) обнаружил увеличение длины волны  рентгеновского излучения вследствие его рассеяния электронами вещества. Согласно же классической теории длины волн падающего и рассеянного излучения должны совпадать. Теория эффекта была построена Комптоном и независимо Дебаем (P. Debye) на основе фотонной гипотезы Эйнштейна. Взаимодействие излучения с электроном сводится к упругому столкновению фотона с покоящимся электроном. При этом импульс фотона определяется в виде

.

Здесь волновой вектор

,

 - единичный вектор в направлении распространения монохроматической волны, соответствующей фотону. Это определение – следствие того, что величины

 и

образуют 4-векторы относительно преобразований Лоренца (см. первую часть курса физики).

 Запишем законы сохранения энергии и импульса для указанного процесса столкновения:

где  - энергия электрона после столкновения. Отсюда получаем частоту рассеянного фотона:

где - угол между  (угол рассеяния). Учитывая связь частоты и длины волны,

,

находим изменение длины волны при рассеянии:

.

Здесь введена комптоновская длина волны электрона

.

Для рентгеновского излучения (см) получаем

,

т.е. вполне заметный эффект. Для видимого света (см) эффект гораздо меньше (). Найденная зависимость изменения длины волны от угла рассеяния прекрасно согласуется с экспериментом.

Высшая математика - лекции, курсовые, типовые задания, примеры решения задач Основы математического анализа