Геометрическая оптика, фотометрия, интерференция, дифракция, поляризация

Математика решение контрольной
Лекции и задачи 1 семестр
Лекции и задачи 2 семестр
Лекции и задачи 3 семестр
Лекции и задачи 4 семестр
Интегралы задачи с решением
Неопределенные интегралы
Метод интегрирования по частям
Курсовой (типовой ) расчет
(задания из Кузнецова)
Математический анализ
Производные и дифференциалы
Вычисление двойного интеграла.
Примеры решения задач по теме
Матрица, функции
Примеры решения задач
контрольной за первый курс
Ряды
Функции
Аналитическая геометрия
Дифференциальные уравнения
Элементарная математика
Поверхности второй степени
Пределы и числовые ряды
ТФКП
Билеты к экзамену
Компьютерная математика Mathematica
Матричная лаборатория MATLAB
Символьная математика Maple
Физика примеры решения задач
Строение атомных ядер
Модели атомных ядер
Ядерные реакции
Электростатика
Механика
Термодинамика
Конденсаторы
Оптика
Радиоактивность
Фотометрия
Квантовая механика
Задачи по ядерке
Радиоактивный распад
Задачи на распад
Взаимодействие нейтронов
Ядерные реакции
Деление и синтез ядер
Нейтронная физика
Квантовая физика
Прикладная математика
Электромагнитное
взаимодействие
Электрическое поле
Фотоны
Электромагнетизм
Дозиметрия
Термодинамика
Атомная энергетика
Быстрый реактор со свинцовым теплоносителем (БРЕСТ-1200)
Авария на ЧАЭС
Физика ядерного реактора
Поглощение электромагнитного излучения в веществе
Радионуклиды в организме человека
Атомные станции
Предотвращение загрязнения окружающей среды выбросами АЭС
Атомная энергетика в странах мира
Атомные реакторы
Атомные станции теплоснабжения
Ядерные двигатели для транспорта
Ядерные двигатели для авиации
Космические ядерные двигатели

Физика атомного ядра и элементарных частиц

Электротехника и электроника
Основы электротехники
Исследование полевых транзисторов
Полупроводниковые выпрямители
Исследование стабилитронов
Курсовые по электронике
Низкочастотный RC- генератор
Выбор мощности электродвигателей
Рассчитать каскад транзисторного усилителя напряжения
Биполярный транзистор
Расчёт электрических фильтров
Расчет управляемых тиристорных выпрямителей
Расчет однофазного трансформатора
Начертательная геометрия
Выполнения заданий контрольной работы
Позиционные задачи
Метрические задачи
Сопромат
Испытание на сжатие
Расчет на прочность и жесткость

Задачи курса сопротивление материалов

Эротика в искусстве
Альдегревер. Ночь. Гравюра
Вакханка. Французская литография
Виккарио. Сластолюбивый фавн
Гравюра. Шабаш ведьм
Информатика
Windovs server
Linux

ГЕОМЕТРИЧЕСКАЯ ОПТИКА

Пример 1. На стеклянную призму с преломляющим углом θ=50° падает под углом ε=30° луч света. Определить угол откло­нения σ луча призмой, если показатель преломления п стекла равен 1,56.

Пример 2. Оптическая сис­тема представляет собой тон­кую плосковыпуклую стек­лянную линзу, выпуклая по­верхность которой посереб­рена. Определить главное фо­кусное расстояние f такой системы, если радиус кривиз­ны R сферической поверхно­сти линзы равен 60 см.

ФОТОМЕТРИЯ Основные формулы

Пример 1. Прожектор ближнего освещения дает пучок света в виде усеченного конуса с углом раствора 2=40°. Световой поток Ф прожектора равен 80 клм. Допуская, что световой поток распре­делен внутри конуса равномерно, определить силу света I прожек­тора.

Пример 2. Люминесцентная цилиндрическая лампа диаметром d=2,5 см и длиной l=40 см создает на расстоянии r=5 м в направ­лении, перпендикулярном оси лампы, освещенность Еv=2 лк. При­нимая лампу за косинусный излучатель, определить; 1) силу света I в данном направлении; 2) яркость L; 3) светимость М лампы.

Погрешности косвенных измерений Часто приходится вычислять искомую величину по результатам измерений других величин, связанных с этой величиной определенной функциональной зависимостью. Например, объем шара можно вычислить, измерив его радиус R . Также измерения называются косвенными.

ИНТЕРФЕРЕНЦИЯ СВЕТА Основные формулы

Пример 1. В точку А экрана от источника S1 монохроматическо­го света длиной волны λ=0,5мкм приходят два луча: непосредствен­но от источника луч S1A, перпендикулярный экрану, и луч S1BA,отраженный в точке В от зеркала, параллельного лучу S1A (рис. 30.2). Расстояние l1 экрана от источника равно 1 м, расстояние h от луча S1A до плоскости зеркала равно 2 мм. Определить: 1) что будет наблюдаться в точке А экрана — усиление или ослабление интенсивности; 2) как изменится интенсивность в точке А, если на пути луча S1A перпенди­кулярно ему поместить плоскопараллельную пластинку стекла (n=1,55) толщиной d=6 мкм.

Пример 2. На толстую стек­лянную пластинку, покрытую очень тонкой пленкой, показа­тель преломления n2 вещества которой равен 1,4, падает нор­мально параллельный пучок монохроматического света (λ=0,6 мкм). Отраженный свет максимально ослаблен вследст­вие интерференции. Определить толщину d пленки.

ДИФРАКЦИЯ СВЕТА Основные формулы

Пример 1. На диафрагму с круглым отверстием радиусом r=1 мм падает нормально параллельный пучок света длиной волны λ=0,05 мкм. На пути лучей, прошедших через отверстие, помещают экран. Определить максимальное расстояние bmax от центра от­верстия до экрана, при котором в центре дифракционной картины еще будет наблюдаться темное пятно.

Пример 2. На щель шириной а=0,1 мм нормально падает параллельный пучок света от монохроматического источника (λ==0,6 мкм). Определить ширину l центрального максимума в дифракционной картине, проецируемой с помощью линзы, нахо­дящейся непосредственно за щелью, на экран, отстоящий от лин­зы на расстоянии L=l м.

Пример 3. На дифракционную решетку нормально к ее поверх­ности падает параллельный пучок света с длиной волны λ=0,5мкм. Помещенная вблизи решетки лин­за проецирует дифракционную картину на плоский экран, удаленный от линзы на L=l м. Расстоя­ние l между двумя максимумами интенсивности первого порядка, наблюдаемыми на экране, равно 20,2 см (рис. 31.3). Определить: 1) постоянную d дифракционной решетки; 2) число n штрихов на 1 см; 3) число максимумов, которое при этом дает дифракционная решетка; 4) максимальный угол φmах отклонения лучей, соот­ветствующих последнему дифракционному максимуму.

ПОЛЯРИЗАЦИЯ СВЕТА

Пример 1. Пучок естественного света падает на полированную поверхность стеклянной пластины, погруженной в жидкость. Отраженный от пластины пучок света составляет угол φ=97° с пада­щим пучком (рис. 32.1). Определить показатель преломления n жидкости, если отраженный свет полностью поляризован.

Пример 2.Два николя N1 и N2 расположены так, что угол a между их плоскостями пропускания равен 60°. Определить: 1) во сколько раз уменьшится интенсивность света при прохождении че­рез один николь (N1); 2) во сколько раз уменьшится интенсивность света при прохождении через оба николя? При прохождении каждо­го из николей потери на отражение и поглощение света составляют 5 %.

Пример 3. Пучок частично-поляризованного света рассматри­вается через николь. Первоначально николь установлен так, что его плоскость пропускания параллельна плоскости колебаний линейно-поляризованного света. При повороте николя на угол (φ=60° интен­сивность пропускаемого им света уменьшилась в k=2 раза. Опреде­лить отношение Ie/Iп интенсивностей естественного и линейно-поля­ризованного света, составляющих данный частично-поляризован­ный свет, а также степень поляризации Р пучка света.

Пример 4. Пластинка кварца толщиной d1=1 мм, вырезанная перпендикулярно оптической оси кристалла, поворачивает пло­скость поляризации монохроматического света определенной длины волны на угол φ1=20°. Определить: 1) какова должна быть толщина d2 кварцевой пластинки, помещенной между двумя «параллельными» николями, чтобы свет был полностью погашен; 2) какой длины l труб­ку с раствором сахара массовой концентрацией С=0,4 кг/л надо поместить между николями для получения того же эффекта? Удель­ное вращение [α] раствора сахара равно 0,665 град/(м*кг*м-3).

ОПТИКА ДВИЖУЩИХСЯ ТЕЛ

Пример 1. Источник монохроматического света с длиной волны λ0=600 нм движется по направлению к наблюдателю со скоростью v=0,1с (с—скорость распространения электромагнитных волн). Определить длину волны λ излучения, которую зарегистрирует спектральный прибор наблюдателя.

Пример 2. Каким минимальным импульсом pmin (в единицах МэВ/с) должен обладать электрон, чтобы эффект Вавилова — Черенкова можно было наблюдать в воде?

 

 

Высшая математика - лекции, курсовые, типовые задания, примеры решения задач Основы математического анализа