Электрическое поле, напряженность, потенциал, конденсаторы

Математика решение контрольной
Лекции и задачи 1 семестр
Лекции и задачи 2 семестр
Лекции и задачи 3 семестр
Лекции и задачи 4 семестр
Интегралы задачи с решением
Неопределенные интегралы
Метод интегрирования по частям
Курсовой (типовой ) расчет
(задания из Кузнецова)
Математический анализ
Производные и дифференциалы
Вычисление двойного интеграла.
Примеры решения задач по теме
Матрица, функции
Примеры решения задач
контрольной за первый курс
Ряды
Функции
Аналитическая геометрия
Дифференциальные уравнения
Элементарная математика
Поверхности второй степени
Пределы и числовые ряды
ТФКП
Билеты к экзамену
Компьютерная математика Mathematica
Матричная лаборатория MATLAB
Символьная математика Maple
Физика примеры решения задач
Строение атомных ядер
Модели атомных ядер
Ядерные реакции
Электростатика
Механика
Термодинамика
Конденсаторы
Оптика
Радиоактивность
Фотометрия
Квантовая механика
Задачи по ядерке
Радиоактивный распад
Задачи на распад
Взаимодействие нейтронов
Ядерные реакции
Деление и синтез ядер
Нейтронная физика
Квантовая физика
Прикладная математика
Электромагнитное
взаимодействие
Электрическое поле
Фотоны
Электромагнетизм
Дозиметрия
Термодинамика
Атомная энергетика
Быстрый реактор со свинцовым теплоносителем (БРЕСТ-1200)
Авария на ЧАЭС
Физика ядерного реактора
Поглощение электромагнитного излучения в веществе
Радионуклиды в организме человека
Атомные станции
Предотвращение загрязнения окружающей среды выбросами АЭС
Атомная энергетика в странах мира
Атомные реакторы
Атомные станции теплоснабжения
Ядерные двигатели для транспорта
Ядерные двигатели для авиации
Космические ядерные двигатели

Физика атомного ядра и элементарных частиц

Электротехника и электроника
Основы электротехники
Исследование полевых транзисторов
Полупроводниковые выпрямители
Исследование стабилитронов
Курсовые по электронике
Низкочастотный RC- генератор
Выбор мощности электродвигателей
Рассчитать каскад транзисторного усилителя напряжения
Биполярный транзистор
Расчёт электрических фильтров
Расчет управляемых тиристорных выпрямителей
Расчет однофазного трансформатора
Начертательная геометрия
Выполнения заданий контрольной работы
Позиционные задачи
Метрические задачи
Сопромат
Испытание на сжатие
Расчет на прочность и жесткость

Задачи курса сопротивление материалов

Эротика в искусстве
Альдегревер. Ночь. Гравюра
Вакханка. Французская литография
Виккарио. Сластолюбивый фавн
Гравюра. Шабаш ведьм
Информатика
Windovs server
Linux

 

ЗАКОН КУЛОНА. ВЗАИМОДЕЙСТВИЕ ЗАРЯЖЕННЫХ ТЕЛ

Пример 1. Три одинаковых положительных заряда Q1=Q2=Q3=1 нКл расположены по вершинам равностороннего треугольника (рис. 13.1). Какой отрицательный заряд Q4 нужно поместить в центре треугольника, чтобы сила притяжения с его стороны уравновесила силы взаимного отталкивания зарядов, находящихся в вершинах?

Пример 2. Два заряда 9Q и -Q закреплены на расстоянии l=50 см друг от друга. Третий заряд Q1 может перемещаться только вдоль прямой, проходящей через заряды. Определить положение заряда Q1, при котором он будет находиться в равновесии. При каком знаке заряда равновесие будет устойчивым *?

Пример 3. Тонкий стержень длиной l=30 см (рис. 13.3) несет равномерно распределенный по длине заряд с линейной плотностью t=1 мкКл/м. На расстоянии r0=20 см от стержня находится заряд Q1=10 нКл, равноудаленный от концов, стержня. Определить силу F взаимодействия точечного заряда с заряженным стержнем.

НАПРЯЖЕННОСТЬ ЭЛЕКТРИЧЕСКОГО ПОЛЯ. ЭЛЕКТРИЧЕСКОЕ СМЕЩЕНИЕ Вынужденные колебания Билеты и задачи к экзамену по физике

Пример 1. Электрическое поле создано двумя точечными зарядами: Q1=30 нКл и Q2= –10 нКл. Расстояние d между зарядами равно 20 см. Определить напряженность электрического поля в точке, находящейся на расстоянии r1=15 см от первого и на расстоянии r2=10 см от второго зарядов.

Пример 2. Электрическое поле создано двумя параллельными бесконечными заряженными плоскостями с поверхностными плотностями заряда s1=0,4 мкКл/м2 и s2=0,1 мкКл/м2. Определить напряженность электрического поля, созданного этими заряженными плоскостями.

Пример 3. На пластинах плоского воздушного конденсатора находится заряд Q=10 нКл. Площадь S каждой пластины конденсатора равна 100 см2 Определить силу F, с которой притягиваются пластины. Поле между пластинами считать однородным.

Пример 4. Электрическое поле создано, бесконечной плоскостью, заряженной с поверхностной плотностью s=400 нКл/м2, и бесконечной прямой нитью, заряженной с линейной плотностью t=100 нКл/м. На расстоянии r=10 см от нити находится точечный заряд Q=10 нКл. Определить силу, действующую на заряд, ее направление, если заряд и нить лежат в одной плоскости, параллельной заряженной плоскости.

Пример 5. Точечный заряд Q=25 нКл находится в ноле, созданном прямым бесконечным цилиндром радиусом R=1 см, равномерно заряженным с поверхностной плотностью s=2 мкКл/м2. Определить силу, действующую на заряд, помещенный от оси цилиндра на расстоянии r=10 см.

Пример 6. Электрическое поле создано тонкой бесконечно длинной нитью, равномерно заряженной с линейной плотностью t=30 нКл/м. На расстоянии а=20 см от нити находится плоская круглая площадка радиусом r=1 см. Определить поток вектора напряженности через эту площадку, если плоскость ее составляет угол b=30° с линией напряженности, проходящей через середину площадки.

Пример 7. Две концентрические проводящие сферы радиусами R1=6 см и R2=10 см несут соответственно заряды Q1=l нКл и Q2= –0,5 нКл. Найти напряженность Е поля в точках, отстоящих от центра сфер на расстояниях r1=5 см, r2=9 см r3=15см. Построить график Е(r).

ПОТЕНЦИАЛ. ЭНЕРГИЯ СИСТЕМЫ ЭЛЕКТРИЧЕСКИХ ЗАРЯДОВ. РАБОТА ПО ПЕРЕМЕЩЕНИЮ ЗАРЯДА В ПОЛЕ

Пример 1. Положительные заряды Q1=3 мкКл и Q2=20 нКл находятся в вакууме на расстоянии r1=l,5 м друг от друга. Определить работу A, которую надо совершить, чтобы сблизить заряды до расстояния r2=1 м.

Пример 2. Найти работу А поля по перемещению заряда Q=10 нКл из точки 1 в точку 2 (рис. 15.1), находящиеся между двумя разноименно заряженными с поверхностной плотностью s=0,4 мкКл/м2 бесконечными параллельными плоскостями, расстояние l между которыми равно 3 см.

Пример 3. По тонкой нити, изогнутой по дуге окружности радиусом R, равномерно распределен заряд с линейной плотностью t=10 нКл/м. Определить напряженность Е и потенциал j электрического поля, создаваемого таким распределенным зарядом в точке О, совпадающей с центром кривизны дуги. Длина l нити составляет 1/3 длины окружности и равна 15 см.

Пример 4. Электрическое поле создана длинным цилиндром радиусом R=1 см, равномерно заряженным с линейной плотностью t=20 нКл/м. Определить разность потенциалов двух точек этого поля, находящихся на расстояниях a1=0,5 см и а2=2 см от поверхности цилиндра, в средней его части.

Пример 5. Электрическое поле создано тонким стержнем, несущим равномерно распределенный по длине заряд t=0,1 мкКл/м. Определить потенциал j поля в точке, удаленной от концов стержня на расстояние, равное длине стержня.

Пример 6. Электрон со скоростью v=1,83×106 м/с влетел в однородное электрическое поле в направлении, противоположном вектору напряженности поля. Какую разность потенциалов U должен пройти электрон, чтобы обладать энергией Ei=13,6 эВ*? (Обладая такой энергией, электрон при столкновении с атомом водорода может ионизировать его. Энергия 13,6 эВ называется энергией ионизации водорода.)

Пример 7. Определить начальную скорость υ0 сближения про­тонов, нахо­дя­щихся на достаточно большом расстоянии друг от друга, если минимальное расстояние rmin, на которое они могут сблизиться, равно 10-11 см.

 Пример 8. Электрон без на­чальной скорости прошел разность потен­циалов U0=10 кВ и влетел в пространство между пластинами плоского конденсатора, заряжен­ного до разности потенциалов Ul=100 В, по ли­нии АВ, парал­лельной пластинам (рис. 15.4). Рас­стояние d между пла­стинами равно 2 см. Длина l1 ­пластин конденсатора в нап­равлении по­лета элек­трона, равна 20 cм. Определить рас­стояние ВС на экране Р, от­стоящем от конденсатора на l2=1 м.

ЭЛЕКТРИЧЕСКИЙ ДИПОЛЬ СВОЙСТВА ДИЭЛЕКТРИКОВ

 Пример 1. Диполь с электрическим моментом р=2 нКл·м находится в однородном электрическом поле напряженностью Е=30 кВ/м. Вектор р составляет угол α=60˚ с направлением си­ловых линий поля. Опреде­лить произведенную внешними силами работу А поворота диполя на угол β=30°.

Пример 2. Три точечных заряда Ql Q2 и Q3 образуют электрически нейтральную систему, причем Ql=Q2= 10 нКл. Заряды рас­положены в вершинах равностороннего треугольника. Определить максимальные значения напряженности Еmах и потен­циала φmах поля, создаваемого этой системой зарядов, на расстоянии r= 1 м от центра треугольника, длина а стороны которого равна 10 см.

Пример 3. В атоме йода, находящемся на расстоянии r=1 нм от альфа-частицы, индуцирован электрический момент р= 1,5*10-32 Кл·м. Опре­делить поляризуемость α атома йода.

Пример 4. Криптон находится под давлением р=10 МПа при температуре Т= 200 К, Определить: 1) диэлектрическую проницаемость ε криптона; 2) его поляризованность Р, если напряженность Е0 внешнего электрического поля равна 1 MB/м. Поляризуемoсть α криптона равна 4,5·10-29 м3,

Пример 5. Жидкий бензол имеет плотность ρ=899 кг/м3 и по­казатель преломления п= 1,50. Определить: 1) электронную поляризуемость αе молекул бензола; 2) диэлектрическую проницаемость ε паров бензола при нормальных условиях.

ЭЛEКTPИЧECКAЯ EMКOCTЬ. КOHДEHCATOPЫ

Пример 1. Определить электрическую емкость С плоского кон­денсатора с двумя слоями диэлектриков: фарфора толщиной d1=2 мм и эбонита толщиной d2= 1,5 мм, если площадь S пластин равна 100 см2.

Пример 2. Два плоских конденсатора одинаковой электроемко­сти С12соединены в батарею последовательно и подключены источнику тока с электродвижущей силой ε. Как изменится разность потенциалов U1 на пластинах первого конденсатора, если пространство между пластинами второго конденсатора, не отключая источника тока, заполнить диэлектриком с диэлектрической проницаемостью ε =7?

ЭНЕРГИЯ ЗАРЯЖЕННОГО ПPOBOДHИКA. ЭHEPГИЯ ЭЛЕКТРИЧЕСКОГО ПОЛЯ

Пример 1. Конденсатор электроемкостью C1=З мкФ былзаря­жен до разности потенциалов U1=40 В. После отключения oт источника тока конденсатор был соединен параллельно с другим незаря­женным конденсатором электроемкостью С2=5 мкФ. Определить энергию ΔW, израсходованную на образование искры в момент присоединения второго конденсатора.

Пример 2. Плоский воздушный конденсатор с площадью S пла­стины, равной 500 см2, подключен к источнику тока, ЭДС которого равна 300 В. Определить работу А внешних сил по раз­движению пластин от расстояния d1 = 1 см до d2=3 см в двух слу­чаях: 1) пластины перед раздвижением отключаются от источника тока; 2) пластины в процессе раздвижения остаются подключенны­ми к нему.

Пример 3. Плоский конденсатор заряжен до разности потенциалов U= 1 кВ. Расстояние d между пластинами равно 1 см. ДИЭ;/1ект­рик - стекло. Определить объемную плотность энергии поля кон­денсатора.

  Пример 4. Металлический шар радиусом R=3 cм несет заряд Q=20 нКл. Шар окружен слоем парафина толщиной d=2см. Определить энергию W электрического поля, заключенного в слое ди­электрика.

 

Высшая математика - лекции, курсовые, типовые задания, примеры решения задач Основы математического анализа