Интегральное исчисление - примеры решения задач

Математика решение контрольной
Лекции и задачи 1 семестр
Лекции и задачи 2 семестр
Лекции и задачи 3 семестр
Лекции и задачи 4 семестр
Интегралы задачи с решением
Неопределенные интегралы
Метод интегрирования по частям
Курсовой (типовой ) расчет
(задания из Кузнецова)
Математический анализ
Производные и дифференциалы
Вычисление двойного интеграла.
Примеры решения задач по теме
Матрица, функции
Примеры решения задач
контрольной за первый курс
Ряды
Функции
Аналитическая геометрия
Дифференциальные уравнения
Элементарная математика
Поверхности второй степени
Пределы и числовые ряды
ТФКП
Билеты к экзамену
Компьютерная математика Mathematica
Матричная лаборатория MATLAB
Символьная математика Maple
Физика примеры решения задач
Строение атомных ядер
Модели атомных ядер
Ядерные реакции
Электростатика
Механика
Термодинамика
Конденсаторы
Оптика
Радиоактивность
Фотометрия
Квантовая механика
Задачи по ядерке
Радиоактивный распад
Задачи на распад
Взаимодействие нейтронов
Ядерные реакции
Деление и синтез ядер
Нейтронная физика
Квантовая физика
Прикладная математика
Электромагнитное
взаимодействие
Электрическое поле
Фотоны
Электромагнетизм
Дозиметрия
Термодинамика
Атомная энергетика
Быстрый реактор со свинцовым теплоносителем (БРЕСТ-1200)
Авария на ЧАЭС
Физика ядерного реактора
Поглощение электромагнитного излучения в веществе
Радионуклиды в организме человека
Атомные станции
Предотвращение загрязнения окружающей среды выбросами АЭС
Атомная энергетика в странах мира
Атомные реакторы
Атомные станции теплоснабжения
Ядерные двигатели для транспорта
Ядерные двигатели для авиации
Космические ядерные двигатели

Физика атомного ядра и элементарных частиц

Электротехника и электроника
Основы электротехники
Исследование полевых транзисторов
Полупроводниковые выпрямители
Исследование стабилитронов
Курсовые по электронике
Низкочастотный RC- генератор
Выбор мощности электродвигателей
Рассчитать каскад транзисторного усилителя напряжения
Биполярный транзистор
Расчёт электрических фильтров
Расчет управляемых тиристорных выпрямителей
Расчет однофазного трансформатора
Начертательная геометрия
Выполнения заданий контрольной работы
Позиционные задачи
Метрические задачи
Сопромат
Испытание на сжатие
Расчет на прочность и жесткость

Задачи курса сопротивление материалов

Эротика в искусстве
Альдегревер. Ночь. Гравюра
Вакханка. Французская литография
Виккарио. Сластолюбивый фавн
Гравюра. Шабаш ведьм
Информатика
Windovs server
Linux

Дифференциальное исчисление функции одной переменной

Производная обратных функций

Задание. Найти частное решение дифференциального уравнения, удовлетворяющее начальным условиям

Пример: Применить полученную формулу для нахождения синуса любого угла с любой степенью точности.
Пример: Вычислить sin28013¢15¢¢.
Теоремы о среднем
Теорема Коши Для доказательства этой теоремы на первый взгляд очень удобно воспользоваться теоремой Лагранжа. Записать формулу конечных разностей для каждой функции, а затем разделить их друг на друга. Однако, это представление ошибочно, т.к. точка e для каждой из функции в общем случае различна. Конечно, в некоторых частных случаях эта точка интервала может оказаться одинаковой для обеих функций, но это- очень редкое совпадение, а не правило, поэтому не может быть использовано для доказательства теоремы.
Раскрытие неопределенностей

Правило Лопиталя Теорема (правило Лопиталя). Если функции f(x) и g(x) дифференцируемы в вблизи точки а, непрерывны в точке а, g¢(x) отлична от нуля вблизи а и f(a) = g(a) = 0, то предел отношения функций при х®а равен пределу отношения их производных, если этот предел (конечный или бесконечный) существует.

Пример: Найти предел . Как видно, при попытке непосредственного вычисления предела получается неопределенность вида . Функции, входящие в числитель и знаменатель дроби удовлетворяют требованиям теоремы Лопиталя.
Производные и дифференциалы высших порядков Общие правила нахождения высших производных. 

Исследование функций с помощью производной Возрастание и убывание функций

  Теорема. 1) Если функция f(x) имеет производную на отрезке [a, b] и возрастает на этом отрезке, то ее производная на этом отрезке неотрицательна, т.е. f¢(x) ³ 0.

  2) Если функция f(x) непрерывна на отрезке [a, b] и дифференцируема на промежутке (а, b), причем f¢(x) > 0 для a < x < b, то эта функция возрастает на отрезке [a, b].

Точки экстремума

Функция f(x) имеет в точке х1 максимум, если ее значение в этой точке больше значений во всех точках некоторого интервала, содержащего точку х1. Функция f(x) имеет в точке х2 минимум, если f(x2 +Dx) > f(x2) при любом Dх (Dх может быть и отрицательным).

  Очевидно, что функция, определенная на отрезке может иметь максимум и минимум только в точках, находящихся внутри этого отрезка. Нельзя также путать максимум и минимум функции с ее наибольшим и наименьшим значением на отрезке – это понятия принципиально различные.

Выпуклость и вогнутость кривой. Точки перегиба Определение. Кривая обращена выпуклостью вверх на интервале (а, b), если все ее точки лежат ниже любой ее касательной на этом интервале. Кривая, обращенная выпуклостью вверх, называется выпуклой, а кривая, обращенная выпуклостью вниз – называется вогнутой.

Асимптоты При исследовании функций часто бывает, что при удалении координаты х точки кривой в бесконечность кривая неограниченно приближается к некоторой прямой. Большегрузные промышленные колеса. Высокого качества.

 Определение. Прямая называется асимптотой кривой, если расстояние от переменной точки кривой до этой прямой при удалении точки в бесконечность стремится к нулю.

  Следует отметить, что не любая кривая имеет асимптоту. Асимптоты могут быть прямые и наклонные. Исследование функций на наличие асимптот имеет большое значение и позволяет более точно определить характер функции и поведение графика кривой.

Векторная функция скалярного аргумента

Свойства производной векторной функции скалярного аргумента

Параметрическое задание функции

Уравнения некоторых типов кривых в параметрической форме

Производная функции, заданной параметрически

Кривизна плоской кривой

Свойства эволюты

Кривизна пространственной кривой

О формулах Френе

  • Пример: Методами дифференциального исчисления исследовать функцию  и построить ее
  • Пример: Исследовать функцию  и построить ее график.график.
  • Пример: Исследовать функцию  и построить ее график.

Интегральное исчисление.

Первообразная функция

Пример

Методы интегрирования

Интегрирование элементарных дробей

Примеры

Интегрирование рациональных функций

  Пример.   

Интегрирование некоторых тригонометрических функций

Интеграл произведения синусов и косинусов

Интегрирование некоторых иррациональных функций

Интегрирование биноминальных дифференциалов

Определенный интеграл

Свойства

Вычисление определенного интеграла

Замена переменных

Интегрирование по частям

Геометрические приложения определенного интеграла

Вычисление объемов тел.

Функции нескольких переменных

Производные и дифференциалы функций нескольких переменных

  Пример . Найти полный дифференциал функции .

Геометрический смысл полного дифференциала. Касательная плоскость и нормаль к поверхности.

Приближенные вычисления с помощью полного дифференциала

Частные производные высших порядков

Экстремум функции нескольких переменных

Условный экстремум

Производная по направлению

 Пример. Вычислить производную функции z = x2 + y2 x в точке А(1, 2) по направлению вектора . В (3, 0).

Градиент

Кратные интегралы

Условия существования двойного интеграла

Вычисление двойного интеграла

  Пример.  Вычислить интеграл , если область интегрирования D ограничена линиями х = 0, х = у2, у = 2.

Тройной интеграл

Цилиндрическая система координат

Геометрические и физические приложения кратных интегралов

Вычисление площади кривой поверхности

Вычисление площадей в полярных координатах

Высшая математика - лекции, курсовые, типовые задания, примеры решения задач Основы математического анализа