Курс лекций математического анализа

1 семестр | 2 семестр | 3 семестр | 4 семестр | Мат. анализ ч1 | Мат. анализ ч2 | Мат. анализ ч3 | Мат. анализ ч4 | Строение атомных ядер | Модели атомных ядер | Ядерные реакции | Термодинамика | Магнитое поле | Оптика | Механика
Математика решение контрольной
Лекции и задачи 1 семестр
Лекции и задачи 2 семестр
Лекции и задачи 3 семестр
Лекции и задачи 4 семестр
Интегралы задачи с решением
Неопределенные интегралы
Метод интегрирования по частям
Курсовой (типовой ) расчет
(задания из Кузнецова)
Математический анализ
Производные и дифференциалы
Вычисление двойного интеграла.
Примеры решения задач по теме
Матрица, функции
Примеры решения задач
контрольной за первый курс
Ряды
Функции
Аналитическая геометрия
Дифференциальные уравнения
Элементарная математика
Поверхности второй степени
Пределы и числовые ряды
ТФКП
Билеты к экзамену
Компьютерная математика Mathematica
Матричная лаборатория MATLAB
Символьная математика Maple
Физика примеры решения задач
Строение атомных ядер
Модели атомных ядер
Ядерные реакции
Электростатика
Механика
Термодинамика
Конденсаторы
Оптика
Радиоактивность
Фотометрия
Квантовая механика
Задачи по ядерке
Радиоактивный распад
Задачи на распад
Взаимодействие нейтронов
Ядерные реакции
Деление и синтез ядер
Нейтронная физика
Квантовая физика
Прикладная математика
Электромагнитное
взаимодействие
Электрическое поле
Фотоны
Электромагнетизм
Дозиметрия
Термодинамика
Атомная энергетика
Быстрый реактор со свинцовым теплоносителем (БРЕСТ-1200)
Авария на ЧАЭС
Физика ядерного реактора
Поглощение электромагнитного излучения в веществе
Радионуклиды в организме человека
Атомные станции
Предотвращение загрязнения окружающей среды выбросами АЭС
Атомная энергетика в странах мира
Атомные реакторы
Атомные станции теплоснабжения
Ядерные двигатели для транспорта
Ядерные двигатели для авиации
Космические ядерные двигатели

Физика атомного ядра и элементарных частиц

Электротехника и электроника
Основы электротехники
Исследование полевых транзисторов
Полупроводниковые выпрямители
Исследование стабилитронов
Курсовые по электронике
Низкочастотный RC- генератор
Выбор мощности электродвигателей
Рассчитать каскад транзисторного усилителя напряжения
Биполярный транзистор
Расчёт электрических фильтров
Расчет управляемых тиристорных выпрямителей
Расчет однофазного трансформатора
Начертательная геометрия
Выполнения заданий контрольной работы
Позиционные задачи
Метрические задачи
Сопромат
Испытание на сжатие
Расчет на прочность и жесткость

Задачи курса сопротивление материалов

Эротика в искусстве
Альдегревер. Ночь. Гравюра
Вакханка. Французская литография
Виккарио. Сластолюбивый фавн
Гравюра. Шабаш ведьм
Информатика
Windovs server
Linux

 

Содержание

Двойной интеграл. Его основные свойства и приложения. Определение двойного интеграла. Теорема существования двойного интеграла. Пусть на плоскости Oxy задана ограниченная замкнутая область D с кусочно-гладкой границей, и пусть на области D определена функция .

Разобьём область D произвольным образом на подобластей (не имеющих общих внутренних точек). Символом будем обозначать площадь области ; символом здесь и дальше будет обозначаться наибольшее расстояние между двумя точками, принадлежащими области D:

Вычисление двойного интеграла. Геометрический смысл двойного интеграла. Геометрический смысл каждого слагаемого интегральной суммы: если , то - объём прямого цилиндра с основанием высоты ; вся интегральная сумма - сумма объёмов таких цилиндров, т.е. объём некоторого ступенчатого тела (высота ступеньки, расположенной над подобластью , равна ). Когда , это ступенчатое тело становится всё ближе к изображенному на рисунке телу, ограниченному снизу областью , сверху - поверхностью , с цилиндрической боковой поверхностью, направляющей которой является граница области , а образующие параллельны оси . Двойной интеграл равен объёму этого тела. Механические приложения двойного интеграла Будем считать, что D - неоднородная плоская пластина с поверхностной плотностью материала в точке Р равной . В механике определяется так. Точка Р окружается малой областью S, находится масса и площадь этой области (площадь тоже будем обозначать буквой S), и . Для нахождения массы по заданной плотности мы ь обратную задачу. Разобьём D на малые подобласти , в каждой из подобластей выберем произвольную точку , и, считая что в пределах плотность постоянна и равна , получим, что масса приближённо есть , а масса всей пластины . Это - интегральная сумма, при уменьшении точность приближения увеличивается, и в пределе .

 

Двойной интеграл в полярных координатах. Вычисление Двукратный (повторный) интеграл. Пусть - область, простая в направлении оси Oy. Рассмотрим выражение . Эта конструкция определяется через два обычных определённых интеграла. После интегрирования по у во внутреннем интеграле (переменная х при этом рассматривается как постоянная) и подстановки по у в пределах от до получается функция, зависящая только от х, которая интегрируется в пределах от a до b. В дальнейшем мы будем обычно записывать этот объект без внутренних скобок: Нам придётся применять эту формулу, в основном, для перехода к полярным координатам. Роль переменных u и v будут играть r и . Как известно, . Вычислим якобиан: , следовательно, . Двойной интеграл в координатах r, вычисляется также как и в координатах x,y, переходом к двухкратному, при этом внешний обычно берут по . Если область D описывается как , то . Естественно, если - кусочные функции, то внешний интеграл разбивается на несколько слагаемых. Однозначно дать рецепт, когда имеет смысл переходить к полярным координатам, нельзя, это дело опыта. Можно пробовать перейти к r,, если либо f(x,y), либо кривые, ограничивающие область интегрирования, либо и то, и другое вместе, зависят от комбинации .

Тройной интеграл. Его основные свойства и приложения. Вычисление тройного интеграла Определение тройного интеграла. Теорема существования тройного интеграла. Пусть в пространстве Oxyz задана ограниченная замкнутая область (объём) V, и пусть на области V определена функция .

Разобьём область V произвольным образом на подобластей (не имеющих общих внутренних точек). Символом будем обозначать объём области ; символом обозначим наибольший из диаметров областей : .

В каждой из подобластей выберем произвольную точку , вычислим в этой точке значение функции , и составим интегральную сумму .

Если существует предел последовательности интегральных сумм при , не зависящий ни от способа разбиения области V на подобласти , ни от выбора точек , то функция называется интегрируемой по области V, а значение этого предела называется тройным интегралом от функции по области V и обозначается .

Если расписать значение через координаты точки , и представить как , получим другое обозначение тройного интеграла:

Тройной интеграл в цилиндрических и сферических координатах. Теорема о переходе от тройного интеграла к повторному. Будем называть ограниченную замкнутую область V простой (правильной), если выполняются два условия : проекция V на какую-либо координатную плоскость, например, на плоскость Оху - простая область D, и любая прямая, перпендикулярная этой плоскости и проходящая через внутреннюю точку V, пересекает границу V в двух точках. Такую область можно описать следующим образом: (поверхность образована множеством нижних точек пересечения прямой, параллельной оси Oz, с границей V; поверхность - множеством верхних точек пересечения).

Криволинейный интеграл 1-го рода. Теорема о за мена переменных в тройном интеграле. Пусть в пространстве Ouvw задана область G, и пусть отображение преобразует эту область в область V пространства Oxyz. Будем считать, что отображение F задаётся функциями . Пусть: 1). F взаимно однозначно отображает G на V; 2). Функции x(u,v,w), y(u,v,w), z(u,v,w) непрерывно дифференцируемы на G (имеют непрерывные частные производные); 3). Якобиан не обращается в нуль на G

Криволинейный интеграл 2-го рода. Примеры применения цилиндрических и сферических координат. Как и в случае перехода к полярным координатам в двойном интеграле, дать однозначный рецепт того, когда следует применять цилиндрические или сферические координаты, нельзя, это дело опыта. Можно попробовать применить цилиндрические координаты, если подынтегральная функция и/или уравнения поверхностей, ограничивающих объём V, зависят от комбинации ; сферические - если эти уравнения зависят от . Рассмотрим ряд примеров.

Формула Грина.

Условие независимости криволинейного интеграла от формы пути на плоскости.

Признак полного дифференциала на плоскости.

Площадь поверхности. Объём тела, ограниченного сверху и снизу поверхностями , с боков - цилиндрической поверхностью с образующими, параллельными оси , равен ; эта формула очевидно следует из геометрического смысла двойного интеграла. Основной вопрос, который надо решить - на какую координатную плоскость проектировать тело, чтобы выкладки были наиболее простыми.

Интегралы по поверхности 1 и 2 рода. Несобственные интегралы по неограниченной области. Логика определения сходимости несобственного двойного, тройного, - кратного интеграла по неограниченной области такая же, как и для несобственного определённого интеграла: мы ограничиваем область, вычисляем интеграл по этой ограниченной области, и, затем, расширяя область интегрирования до исходной, смотрим, существует или нет конечный предел значения интеграла. Рассмотрим это более подробно для случая двойного интеграла.

Формула Остроградского. Ее векторная запись. Несобственные интегралы от неограниченной функции. Структура множества точек, в окрестностях которых функция двух, трех и большего числа переменных может оказаться неограниченной, может быть достаточно сложной. Так, функция трёх переменных может быть неограниченной в окрестности одной точки , прямой , плоскости ; естественно, возможны более сложные случаи. Мы рассмотрим самый простой случай, когда функция неограничена в окрестности единственной точки.

Формула Стокса. Ее векторная запись.

Скалярное и векторное поле. Определение и основные свойства градиента, дивергенции, ротора, потока и циркуляции векторного поля.

Соленоидальное поле. Векторная трубка в соленоидальном поле.

Потенциальное поле.

Высшая математика - лекции, курсовые, типовые задания, примеры решения задач Основы математического анализа