1 семестр | 2 семестр | 3 семестр | 4 семестр | Мат. анализ ч1 | Мат. анализ ч2 | Мат. анализ ч3 | Мат. анализ ч4 | Строение атомных ядер | Модели атомных ядер | Ядерные реакции | Термодинамика | Магнитое поле | Оптика | Механика |

Курс лекций по высшей математики Оглавление

Аналитическая геометрия

Уравнение линии на плоскости.

 Как известно, любая точка на плоскости определяется двумя координатами в какой- либо системе координат. Системы координат могут быть различными в зависимости от выбора базиса и начала координат.  

Определение. Уравнением линии  называется соотношение y = f(x) между координатами точек, составляющих эту линию.  Отметим, что уравнение линии может быть выражено параметрическим способом, то есть каждая координата каждой точки выражается через некоторый независимый параметр t.  Характерный пример – траектория движущейся точки. В этом случае роль параметра играет время.

Уравнение прямой на плоскости.

 Определение. Любая прямая на плоскости может быть задана уравнением первого порядка Ах + Ву + С = 0, причем постоянные А, В не равны нулю одновременно, т.е. А2 + В2 ¹ 0. Это уравнение первого порядка называют общим уравнением прямой.   В зависимости от значений постоянных А,В и С возможны следующие частные случаи:- C = 0, А ¹ 0, В ¹ 0 – прямая проходит через начало координат- А = 0, В ¹ 0, С ¹ 0 { By + C = 0}- прямая параллельна оси Ох- В = 0, А ¹ 0, С ¹ 0 { Ax + C = 0} – прямая параллельна оси Оу- В = С = 0, А ¹ 0 – прямая совпадает с осью Оу- А = С = 0, В ¹ 0 – прямая совпадает с осью Ох Уравнение прямой может быть представлено в различном виде в зависимости от каких – либо заданных начальных условий.

Уравнение прямой по точке и вектору нормали.

Определение. В декартовой прямоугольной системе координат вектор с компонентами (А, В) перпендикулярен прямой , заданной уравнением Ах + Ву + С = 0. Пример. Найти уравнение прямой, проходящей через точку А(1, 2) перпендикулярно вектору (3, -1). Составим при А = 3 и В = -1 уравнение прямой: 3х – у + С = 0. Для нахождения коэффициента С подставим в полученное выражение координаты заданной точки А. Получаем: 3 – 2 + C = 0, следовательно С = -1. Итого: искомое уравнение: 3х – у – 1 = 0. Уравнение прямой, проходящей через две точки.  Пусть в пространстве заданы две точки M1(x1, y1, z1) и M2(x2, y2, z2), тогда уравнение прямой, проходящей через эти точки:  Если какой- либо из знаменателей равен нулю, следует приравнять нулю соответствующий числитель.  На плоскости записанное выше уравнение прямой упрощается: если х1 ¹ х2 и х = х1, еслих1 = х2. Дробь = k называется угловым коэффициентом прямой.

Пример. Найти уравнение прямой, проходящей через точки А(1, 2) и В(3, 4). Применяя записанную выше формулу, получаем:

Уравнение прямой по точке и угловому коэффициенту.  Если общее уравнение прямой Ах + Ву + С = 0 привести к виду: и обозначить , то полученное уравнение называется уравнением прямой с угловым коэффициентом kМатрица называется расширенной матрицей для исходной системы уравнений. Если из расширенной матрицы удалить столбец свободных членов, то получится матрица коэффициентов системы, которую иногда называют просто матрицей системы. Высшая математика - лекции, курсовые, типовые задания, примеры решения задач Интегралы - лекции, задачи с решениями