Прямые частного положения. Поверхности второго порядка Способ вращения Построить пересечение конуса и призмы примеры выполнения заданий контрольной работы Плоскость общего положения на комплексном чертеже

Начертательная геометрия Задачи и примеры

Но наряду с этим, между оригиналом и его проекцией существует определённая связь, заключающаяся в том, что некоторые свойства оригинала сохраняются и на его проекции. Эти свойства называются инвариантными (проективными) для данного способа проецирования. В процессе параллельного проецирования (получения проекций геометрической фигуры по её оригиналу) или реконструкции чертежа (воспроизведения оригинала по заданным его проекциям) любую теорему можно составить и доказать, базируясь на инвариантных свойствах параллельного проецирования, которые в начертательной геометрии играют такую же роль, как аксиомы в геометрии.

Прямые частного положения.

Относительно плоскостей проекций прямые могут располагаться по разному. Если они параллельны или перпендикулярны плоскостям проекций, то говорят , что это прямые частного положения.

Горизонталь

Прямая, параллельная горизонтальной плоскости, называется горизонталью,h // Г (рисунок 2-1). На фронтальной проекции (виде спереди) она всегда перпендикулярна вертикальным линиям связи, а на виде сверху составляет с ними некоторый угол α (реконструкцией чертежа определяем положение прямой в пространстве). На виде сверху отрезок АВ, взятый на прямой, изображается в натуральную величину; здесь же можно определить угол α наклона прямой к фронтальной плоскости и угол γ - наклона ее к профильной плоскости.

 На горизонтальной проекции (виде сверху) горизонталь проецируется без искажения.

4.2 Фронталь

 

Прямая, параллельная фронтальной плоскости, называется фронталью. f // Ф (рисунок 2-2). На горизонтальной проекции (виде сверху) фронталь всегда перпендикулярна вертикальным линиям связи, а на фронтальной проекции (виде спереди) составляет с ними некоторый угол. Отрезок СD, взятый на прямой, на виде спереди изображается без искажений. Здесь же определяются углы наклона прямой к горизонтальной плоскости b и к профильной плоскости П γ.

Фронталь проецируется без искажения на фронтальной проекции (виде спереди).

 

4.3 Профильная прямая

 

Прямая, параллельная профильной плоскости, называется профильной прямой р. р//П (рисунок 2-3). На видах спереди и сверху такая прямая всегда совпадает по направлению с вертикальными линиями связи. Эти виды не определяют наглядно положение прямой в пространстве, поэтому необходимо построить ее изображение на виде слева, где определяются углы наклона прямой к фронтальной a и горизонтальной b плоскостям уровня. Отрезок EF, взятый на прямой р, на виде слева изображается в натуральную величину.

Положение прямой в пространстве определяется положением 2-х любых ее точек (например Е и F). Для построения точек Е и F на виде сверху необходимо наметить положение баз отсчета глубин, а затем, замерив глубины точек, отложить их на виде сверху. Удобно при выборе баз отсчета проводить их через одну из имеющихся точек. Так при выборе базы отсчета глубин ее проводят через дальнюю от наблюдателя точку - Е. Тогда задача построения 3-го вида упрощается - нужно строить на нем на одну точку меньше – F.

Профильная прямая проецируется без искажения на профильной проекции (виде слева).


4.4 Вертикальная прямая (горизонтально-проецирующая)

Это прямая, перпендикулярная горизонтальной плоскости Г.

Отрезок, отложенный на данной прямой, на видах спереди и слева изображается в натуральную величину (рисунок 2-4), а на виде сверху - как точка, совпадающая с проекцией прямой i. Точки А и В называются горизонтально-конкурирующими (совпадающими).

 

 

4.5 Прямая перпендикулярная фронтальной плоскости

(фронтально-проецирующая)

 

< На видах сверху и слева отрезок такой прямой изображается в натуральную величину, а на виде спереди - в виде точки (рисунок 2-5). Точки С и D называются фронтально-конкурирующими.

 

 

4.6 Прямая перпендикулярная профильной плоскости

(профильно-проецирующая)

 

Такая прямая показана на рисунке 2-6. Точки А и В здесь – профильно-конкурирующие.

Начертательная геометрия, являясь одной из ветвей геометрии, относящейся к математике, имеет ту же цель, что и геометрия вообще: изучение форм предметов окружающего нас материального мира и отношений между ними, установление закономерностей и применение их к решению практических задач.

Прямые наибольшего уклона плоскости и определение углов наклона плоскости к плоскостям уровня

Вертикальная плоскость

Деление отрезка в заданном отношении

Но наибольшее значение и применение методы начертательной геометрии нашли в различных областях техники при составлении различного вида технических чертежей: машиностроительных, строительных, различного рода карт и т.д. Начертательная геометрия, таким образом, является звеном, соединяющим математические науки с техническими. Начертательная геометрия входит в группу общетехнических дисциплин, составляющих основу всякого инженерного образования. Она учит грамотно владеть выразительным техническим языком - языком чертежа, умению составлять и свободно читать чертежи, решать при помощи чертежей различные инженерно-технические задачи
Построить линию пересечения полуцилиндра конусом вращения